Enhanced TiO2/SiCx Active Layer Formed In Situ on Coal Gangue/Ti3C2 MXene Electrocatalyst as Catalytic Integrated Units for Efficient Li-O2 Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Activated Coal Gangue Precursor
2.2. Synthesis of Ti3C2 MXene
2.3. Synthesis of Coal Gangue@Ti3C2 MXene
2.4. Materials Characterization
2.5. Cathode Preparation and Measurement
3. Results
3.1. Morphological and Structural Characterization
3.2. Aprotic Li-O2 Battery Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, J.; Li, L.; Park, J.-B.; Sun, Y.-K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2. Chem. Rev. 2014, 114, 5611–5640. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, S.; Guo, Y.; Wu, S.; Yang, Q.-H. A bidirectional phase-transfer catalyst for Li-O2 batteries with high discharge capacity and low charge potential. Energy Storage Mater. 2022, 50, 564–571. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, W.; Wu, J.; Hu, Z.; Liu, F.; Wang, L.; Peng, H. Recent advances in charge mechanism of noble metal-based cathodes for Li-O2 batteries. Chin. Chem. Lett. 2023, 34, 107413. [Google Scholar] [CrossRef]
- Balaish, M.; Jung, J.W.; Kim, I.D.; Ein-Eli, Y. A critical review on functionalization of air-cathodes for nonaqueous Li–O2 batteries. Adv. Funct. Mater. 2020, 30, 1808303. [Google Scholar] [CrossRef]
- Qiu, Q.; Long, J.; Yao, P.; Wang, J.; Li, X.; Pan, Z.Z.; Zhao, Y.; Li, Y. Cathode electrocatalyst in aprotic lithium oxygen (Li-O2) battery: A literature survey. Catal. Today 2023, 420, 114138. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Wang, C.; Peng, X.; Fang, W.; Hou, Y.; Wang, J.; Ye, J.; Wu, Y. Li2O2 formation electrochemistry and its influence on oxygen reduction/evolution reaction kinetics in aprotic Li-O2 batteries. Small Methods 2022, 6, 2101280. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, H.; Kwon, H.J.; Bak, S.M.; Jaye, C.; Fischer, D.A.; Yoon, G.; Park, J.O.; Seo, D.H.; Ma, S.B.; et al. Carbon-free high-performance cathode for solid-state Li-O2 battery. Sci. Adv. 2022, 8, 8584. [Google Scholar] [CrossRef]
- Zhao, B.; Ye, Z.; Kong, X.; Han, L.; Xia, Z.; Chen, K.; Wang, Q.; Li, M.; Shang, Y.; Cao, A. Orthogonal-Channel, Low-Tortuosity Carbon Nanotube Platforms for High-Performance Li–O2 Batteries. ACS Nano 2023, 17, 18382–18391. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Bai, Y.; Zhang, J.; Tan, G.; Wu, C. Irreplaceable carbon boosts Li-O2 batteries: From mechanism research to practical application. Nano Energy 2021, 89, 106464. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, K.; Gu, Q.; Tao, L.; Li, Y.; Tan, H.; Zhou, J.; Zhang, W.; Li, H.; Guo, S. Lewis-Acidic PtIr Multipods Enable High-Performance Li–O2 Batteries. Angew. Chem. Int. Edit. 2021, 60, 26592–26598. [Google Scholar] [CrossRef]
- Wang, D.; Mu, X.; He, P.; Zhou, H. Materials for advanced Li-O2 batteries: Explorations, challenges and prospects. Mater. Today 2019, 26, 87–99. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Z.; Zhang, W.; Huang, Y.; Liu, Y.; Wu, D.; Wang, L.; Chou, S. Toward high-performance lithium-oxygen batteries with cobalt-based transition metal oxide catalysts: Advanced strategies and mechanical insights. InfoMat 2022, 4, e12260. [Google Scholar] [CrossRef]
- Wang, J.; Okabe, J.; Komine, Y.; Notohara, H.; Urita, K.; Moriguchi, I.; Wei, M. The optimized interface engineering of VS2 as cathodes for high performance all-solid-state lithium-ion battery. Sci. China Technol. Sci. 2022, 65, 1859–1866. [Google Scholar] [CrossRef]
- Chong, P.; Zhou, Z.; Wang, K.; Zhai, W.; Li, Y.; Wang, J.; Wei, M. The stabilizing of 1T-MoS2 for all-solid-state lithium-ion batteries. Batteries 2023, 9, 26. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, Y.; Hu, X.; Kim, D.; Zhu, Y.; Su, Y.; Fan, Y.; Qiao, H.; Yu, B.; Chen, Y. Evaluating the functions of the key dopant elements in multi-metal oxide electrocatalysts for high-performance Li-O2 batteries. Energy Storage Mater. 2023, 63, 102989. [Google Scholar] [CrossRef]
- Jung, J.W.; Cho, S.H.; Nam, J.S.; Kim, I.D. Current and future cathode materials for non-aqueous Li-air (O2) battery technology—A focused review. Energy Storage Mater. 2020, 24, 512–528. [Google Scholar] [CrossRef]
- Zhang, T.; Wen, Q.; Gao, S.; Tang, J. Comparative study on mechanical and environmental properties of coal gangue sand concrete. Constr. Build. Mater. 2023, 400, 132646. [Google Scholar] [CrossRef]
- Li, X.; Shao, J.; Zheng, J.; Bai, C.; Zhang, X.; Qiao, Y.; Colombo, P. Fabrication and application of porous materials made from coal gangue: A review. Int. J. Appl. Ceram. Technol. 2023, 20, 2099–2124. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, T.C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials—A review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Qiu, J.; Zhu, M.; Zhou, Y.; Guan, X. Effect and mechanism of coal gangue concrete modification by fly ash. Constr. Build. Mater. 2021, 294, 123563. [Google Scholar] [CrossRef]
- Han, L.; Ren, W.; Wang, B.; He, X.; Ma, L.; Huo, Q.; Wang, J.; Bao, W.; Chang, L. Extraction of SiO2 and Al2O3 from coal gangue activated by supercritical water. Fuel 2019, 253, 1184–1192. [Google Scholar] [CrossRef]
- Sun, Z.; Hu, Y.; Zeng, K.; Li, M.; Zhao, S.; Zhang, J. Turn “Waste” into Wealth: MoO2@ coal Gangue Electrocatalyst with Amorphous/Crystalline Heterostructure for Efficient Li–O2 Batteries. Small 2023, 19, 2208145. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Fu, Z.; Legut, D.; Germann, T.C.; Du, S.; Zhang, H.; Francisco, J.S.; Zhang, R. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv. Mater. 2021, 33, 2102595. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Kong, L.; Xu, S.; Lin, K.; He, W.; Ni, M.; Ruan, Q.; Zhang, P.; Liu, Y.; Zhang, W.; et al. Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. Energy Storage Mater. 2021, 43, 509–530. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Prasanna, K.; Jothi, V.R.; Vikraman, D.; Hussain, S.; Hwang, J.H.; Kim, H.-S. Recent advances in nanostructured transition metal carbide-and nitride-based cathode electrocatalysts for Li–O2 batteries (LOBs): A brief review. Nanomaterials 2020, 10, 2106. [Google Scholar] [CrossRef]
- Song, S.; Yin, F.; Fu, Y.; Ren, J.; Ma, J.; Liu, Y.; Ma, R.; Ye, W. Simultaneous regulation of Li-ion intercalation and oxygen termination decoration on Ti3C2Tx MXene toward enhanced oxygen electrocatalysis for Li-O2 batteries. Chem. Eng. J. 2023, 451, 138818. [Google Scholar] [CrossRef]
- Zheng, R.; Shu, C.; Hou, Z.; Hu, A.; Hei, P.; Yang, T.; Li, J.; Liang, R.; Long, J. In situ fabricating oxygen vacancy-rich TiO2 nanoparticles via utilizing thermodynamically metastable Ti atoms on Ti3C2Tx MXene nanosheet surface to boost electrocatalytic activity for high-performance Li–O2 batteries. ACS Appl. Mater. Interfaces 2019, 11, 46696–46704. [Google Scholar] [CrossRef]
- Wei, C.; Tian, M.; Wang, M.; Shi, Z.; Yu, L.; Li, S.; Fan, Z.; Yang, R.; Sun, J. Universal in situ crafted MO x-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li–S Batteries. ACS Nano 2020, 14, 16073–16084. [Google Scholar] [CrossRef]
- Bao, C.; Wang, J.; Wang, B.; Sun, J.; He, L.; Pan, Z.; Jiang, Y.; Wang, D.; Liu, X.; Dou, S.X.; et al. 3D Sodiophilic Ti3C2 MXene@ g-C3N4 Hetero-Interphase Raises the Stability of Sodium Metal Anodes. ACS Nano 2022, 16, 17197–17209. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Que, L.F.; Yu, F.D.; Deng, L.; Liang, Z.J.; Jiang, Y.S.; Sun, M.Y.; Zhao, L.; Wang, Z.B. Tailoring Nitrogen Terminals on MXene Enables Fast Charging and Stable Cycling Na-Ion Batteries at Low Temperature. Nano-Micro Lett. 2022, 14, 143. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Zhou, N.; Li, M.; Huo, B.; Zeng, K. Enhanced TiO2/SiCx Active Layer Formed In Situ on Coal Gangue/Ti3C2 MXene Electrocatalyst as Catalytic Integrated Units for Efficient Li-O2 Batteries. Nanomaterials 2024, 14, 278. https://doi.org/10.3390/nano14030278
Sun Z, Zhou N, Li M, Huo B, Zeng K. Enhanced TiO2/SiCx Active Layer Formed In Situ on Coal Gangue/Ti3C2 MXene Electrocatalyst as Catalytic Integrated Units for Efficient Li-O2 Batteries. Nanomaterials. 2024; 14(3):278. https://doi.org/10.3390/nano14030278
Chicago/Turabian StyleSun, Zhihui, Nan Zhou, Meng Li, Binbin Huo, and Kai Zeng. 2024. "Enhanced TiO2/SiCx Active Layer Formed In Situ on Coal Gangue/Ti3C2 MXene Electrocatalyst as Catalytic Integrated Units for Efficient Li-O2 Batteries" Nanomaterials 14, no. 3: 278. https://doi.org/10.3390/nano14030278
APA StyleSun, Z., Zhou, N., Li, M., Huo, B., & Zeng, K. (2024). Enhanced TiO2/SiCx Active Layer Formed In Situ on Coal Gangue/Ti3C2 MXene Electrocatalyst as Catalytic Integrated Units for Efficient Li-O2 Batteries. Nanomaterials, 14(3), 278. https://doi.org/10.3390/nano14030278