Moving Toward Biomimetic Tissue-Engineered Scaffolds
Conflicts of Interest
References
- Baiguera, S.; Urbani, L.; Del Gaudio, C. Tissue engineered scaffolds for an effective healing and regeneration: Reviewing orthotopic studies. Biomed Res. Int. 2014, 2014, 398069. [Google Scholar] [CrossRef] [PubMed]
- Tonti, O.R.; Larson, H.; Lipp, S.N.; Luetkemeyer, C.M.; Makam, M.; Vargas, D.; Wilcox, S.M.; Calve, S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater. 2021, 132, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Guo, Y.; Lu, Y.; Liu, F.; Heng, B.C.; Deng, X. The considerations on selecting the appropriate decellularized ECM for specific regeneration demands. Mater. Today Bio. 2024, 29, 101301. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Torres, F.; Maciel-Cerda, A.; González-Gómez, G.H.; Falcón-Neri, A.; Gómez-Lizárraga, K.; Esquivel-Posadas, H.T.; Vera-Graziano, R. In Vitro Modulation of Spontaneous Activity in Embryonic Cardiomyocytes Cultured on Poly(vinyl alcohol)/Bioglass Type 58S Electrospun Scaffolds. Nanomaterials 2024, 14, 372. [Google Scholar] [CrossRef] [PubMed]
- Sousa de Almeida, M.; Lee, A.; Itel, F.; Maniura-Weber, K.; Petri-Fink, A.; Rothen-Rutishauser, B. The Effect of Substrate Properties on Cellular Behavior and Nanoparticle Uptake in Human Fibroblasts and Epithelial Cells. Nanomaterials 2024, 14, 342. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Galluzzi, M. Hyaluronic Acid/Collagen Nanofiber Tubular Scaffolds Support Endothelial Cell Proliferation, Phenotypic Shape and Endothelialization. Nanomaterials 2021, 11, 2334. [Google Scholar] [CrossRef] [PubMed]
- Sassi, L.; Ajayi, O.; Campinoti, S.; Natarajan, D.; McQuitty, C.; Siena, R.R.; Mantero, S.; De Coppi, P.; Pellegata, A.F.; Chokshi, S.; et al. A Perfusion Bioreactor for Longitudinal Monitoring of Bioengineered Liver Constructs. Nanomaterials 2021, 11, 275. [Google Scholar] [CrossRef] [PubMed]
- Górnicki, T.; Lambrinow, J.; Golkar-Narenji, A.; Data, K.; Domagała, D.; Niebora, J.; Farzaneh, M.; Mozdziak, P.; Zabel, M.; Antosik, P.; et al. Biomimetic Scaffolds-A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering. Nanomaterials 2024, 14, 531. [Google Scholar] [CrossRef] [PubMed]
- Roato, I.; Masante, B.; Putame, G.; Massai, D.; Mussano, F. Challenges of Periodontal Tissue Engineering: Increasing Biomimicry through 3D Printing and Controlled Dynamic Environment. Nanomaterials 2022, 12, 3878. [Google Scholar] [CrossRef] [PubMed]
- Cun, X.; Hosta-Rigau, L. Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. Nanomaterials 2020, 10, 2070. [Google Scholar] [CrossRef] [PubMed]
- Corsi, F.; Carotenuto, F.; Di Nardo, P.; Teodori, L. Harnessing Inorganic Nanoparticles to Direct Macrophage Polarization for Skeletal Muscle Regeneration. Nanomaterials 2020, 10, 1963. [Google Scholar] [CrossRef] [PubMed]
- Politi, S.; Carotenuto, F.; Rinaldi, A.; Di Nardo, P.; Manzari, V.; Albertini, M.C.; Araneo, R.; Ramakrishna, S.; Teodori, L. Smart ECM-Based Electrospun Biomaterials for Skeletal Muscle Regeneration. Nanomaterials 2020, 10, 1781. [Google Scholar] [CrossRef] [PubMed]
- Baiguera, S.; Del Gaudio, C.; Carotenuto, F.; Di Nardo, P.; Teodori, L. Information-Driven Design as a Potential Approach for 3D Printing of Skeletal Muscle Biomimetic Scaffolds. Nanomaterials 2020, 10, 1986. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baiguera, S.; Di Silvio, L.; Del Gaudio, C. Moving Toward Biomimetic Tissue-Engineered Scaffolds. Nanomaterials 2024, 14, 2028. https://doi.org/10.3390/nano14242028
Baiguera S, Di Silvio L, Del Gaudio C. Moving Toward Biomimetic Tissue-Engineered Scaffolds. Nanomaterials. 2024; 14(24):2028. https://doi.org/10.3390/nano14242028
Chicago/Turabian StyleBaiguera, Silvia, Lucy Di Silvio, and Costantino Del Gaudio. 2024. "Moving Toward Biomimetic Tissue-Engineered Scaffolds" Nanomaterials 14, no. 24: 2028. https://doi.org/10.3390/nano14242028
APA StyleBaiguera, S., Di Silvio, L., & Del Gaudio, C. (2024). Moving Toward Biomimetic Tissue-Engineered Scaffolds. Nanomaterials, 14(24), 2028. https://doi.org/10.3390/nano14242028