Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance
Abstract
1. Introduction
2. Materials and Methods
2.1. Coating Deposition
2.2. Characterization of TiZrMoC Coatings
2.3. Computational Procedure
3. Results and Discussion
3.1. Nanostructure and Chemical Bonding
XPS Spectrum | Peak Position [eV] | Identification | Reference Data [eV] |
---|---|---|---|
Ti 2p3/2 | 454.9 | TiC | 455.05 [61], 455.0 [62] |
Ti 2p1/2 | 461.1 | TiC | 461.3 [61], 461.0 [62] |
Zr 3d5/2 | 179.3 | ZrC | 179.1 [61], 179.6 [63] |
181.65 | ZrC | 181.5 [61] | |
Mo 3d3/2 | 231.57 | MoC | 231.4–232.1 [64,65,66] |
Mo 3d5/2 | 228.4 | MoC | 228.2–228.8 [64,65,66] |
C 1s | 282.2 | TiC | 281.9 [67], 282.2 [68] |
C 1s | 284.6 | C-C | 284.5 [68], 284.6 [67] |
3.2. Tribological and Mechanical Properties
System | H [GPa] | Method | Refs. |
---|---|---|---|
Ti-Zr-Mo-C | 24–34 | Coatings (DC magnetron) | This work |
Ti-Nb-C | 20–25 | Bulk (hot press) | Fides et al. [76] |
Ti-Nb-C | 26–29 | Coatings (laser cladding) | Sun et al. [77] |
Ti-Mo-C | 8–10 | Coatings (RF magnetron) | Koutzaki et al. [7] |
Ti-W-C | 15–26 | Coatings (RF magnetron) | Koutzaki et al. [7] |
Ti-Zr-C | 26–33 | Coatings (DC magnetron) | Pogrebnjak et al. [70] |
Ti-Zr-C | 14–34 | Coatings (DC magnetron) | Rodríguez-Hernández et al. [78] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarkeeva, A.A.; Kruglov, A.A.; Lutfullin, R.Y.; Gladkovskiy, S.V.; Zhilyaev, A.P.; Mulyukov, R.R. Characteristics of the Mechanical Behavior of Ti–6Al–4V Multilayer Laminate under Impact Loading. Compos. Part B Eng. 2020, 187, 107838. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Ivashchenko, V.I.; Skrynskyy, P.L.; Bondar, O.V.; Konarski, P.; Załęski, K.; Jurga, S.; Coy, E. Experimental and Theoretical Studies of the Physicochemical and Mechanical Properties of Multi-Layered TiN/SiC Films: Temperature Effects on the Nanocomposite Structure. Compos. Part B Eng. 2018, 142, 85–94. [Google Scholar] [CrossRef]
- Lengauer, W. Transition Metal Carbides, Nitrides, and Carbonitrides. In Handbook of Ceramic Hard Materials; Wiley: Hoboken, NJ, USA, 2000; pp. 202–252. [Google Scholar]
- Kumar, A.; Chan, H.L.; Kapat, J.S. Deposition and Characterization of Titanium Carbide Coatings Using Laser Ablation Method. Appl. Surf. Sci. 1998, 127–129, 549–552. [Google Scholar] [CrossRef]
- In Jhon, Y.; Ki Han, I.; Lee, J.H.; Jhon, Y.M. Microscopic Understanding of Exceptional Orientation-Dependent Tensile and Fracture Responses of Two-Dimensional Transition-Metal Carbides. Appl. Surf. Sci. 2022, 585, 152557. [Google Scholar] [CrossRef]
- Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J.M. Unintentional Carbide Formation Evidenced during High-Vacuum Magnetron Sputtering of Transition Metal Nitride Thin Films. Appl. Surf. Sci. 2016, 385, 356–359. [Google Scholar] [CrossRef]
- Koutzaki, S.H.; Krzanowski, J.E.; Nainaparampil, J.J. Phase Formation and Microstructure in Sputter-Deposited Ti-Mo-C and Ti-W-C Thin Films. Metall. Mater. Trans. A 2002, 33, 1579–1588. [Google Scholar] [CrossRef]
- Smyrnova, K.; Ivashchenko, V.I.; Sahul, M.; Čaplovič, Ľ.; Skrynskyi, P.; Kozak, A.; Konarski, P.; Koltunowicz, T.N.; Galaszkiewicz, P.; Bondariev, V.; et al. Microstructural, Electrical, and Tribomechanical Properties of Mo-W-C Nanocomposite Films. Nanomaterials 2024, 14, 1061. [Google Scholar] [CrossRef]
- Xia, K.; Zhan, H.; Zhang, X.; Li, Z. Atomistic Investigation of the Titanium Carbide MXenes under Impact Loading. Nanomaterials 2022, 12, 2456. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Onoprienko, A.; Pogrebnjak, A.; Scrynskyy, P.; Marchuk, O.; Kovalchenko, A.; Olifan, O. Influence of Bias Voltage on the Structure and Mechanical Properties of Ti-Nb-C Films Deposited by DC Dual Magnetron Sputtering. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 2024, 28, 25–32. [Google Scholar] [CrossRef]
- Jhi, S.-H.; Ihm, J.; Louie, S.G.; Cohen, M.L. Electronic Mechanism of Hardness Enhancement in Transition-Metal Carbonitrides. Nature 1999, 399, 132–134. [Google Scholar] [CrossRef]
- Holleck, H. Material Selection for Hard Coatings. J. Vac. Sci. Technol. A Vac. Surf. Film. 1986, 4, 2661–2669. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Turchi, P.E.A.; Medukh, N.R.; Shevchenko, V.I.; Gorb, L.; Leszczynski, J. A First-Principles Study of the Stability and Mechanical Properties of Ternary Transition Metal Carbide Alloys. J. Appl. Phys. 2019, 125, 235101. [Google Scholar] [CrossRef]
- Zhang, G.; Li, B.; Jiang, B.; Yan, F.; Chen, D. Microstructure and Tribological Properties of TiN, TiC and Ti(C, N) Thin Films Prepared by Closed-Field Unbalanced Magnetron Sputtering Ion Plating. Appl. Surf. Sci. 2009, 255, 8788–8793. [Google Scholar] [CrossRef]
- Pogrebnjak, A.; Ivashchenko, V.; Bondar, O.; Beresnev, V.; Sobol, O.; Załęski, K.; Jurga, S.; Coy, E.; Konarski, P.; Postolnyi, B. Multilayered Vacuum-Arc Nanocomposite TiN/ZrN Coatings before and after Annealing: Structure, Properties, First-Principles Calculations. Mater. Charact. 2017, 134, 55–63. [Google Scholar] [CrossRef]
- Baker, M.A.; Mollart, T.P.; Gibson, P.N.; Gissler, W. Combined X-Ray Photoelectron/Auger Electron Spectroscopy/Glancing Angle x-Ray Diffraction/Extended x-Ray Absorption Fine Structure Investigation of TiB x N y Coatings. J. Vac. Sci. Technol. A Vac. Surf. Film. 1997, 15, 284–291. [Google Scholar] [CrossRef]
- Kuroda, P.A.B.; Lourenço, M.L.; Correa, D.R.N.; Grandini, C.R. Thermomechanical Treatments Influence on the Phase Composition, Microstructure, and Selected Mechanical Properties of Ti–20Zr–Mo Alloys System for Biomedical Applications. J. Alloys Compd. 2020, 812, 152108. [Google Scholar] [CrossRef]
- Correa, D.R.N.; Kuroda, P.A.B.; Grandini, C.R. Structure, Microstructure, and Selected Mechanical Properties of Ti-Zr-Mo Alloys for Biomedical Applications. Adv. Mater. Res. 2014, 922, 75–80. [Google Scholar] [CrossRef]
- Qi, M.; Chen, B.; Xia, C.; Liu, Y.; Liu, S.; Zhong, H.; Zou, X.; Yang, T.; Li, Q. Microstructure, Mechanical Properties and Biocompatibility of Novel Ti-20Zr-XMo Alloys. J. Alloys Compd. 2021, 888, 161478. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, X.; Cao, P. Mechanical and Electrochemical Characterization of Ti–12Mo–5Zr Alloy for Biomedical Application. J. Alloys Compd. 2011, 509, 8235–8238. [Google Scholar] [CrossRef]
- Marupalli, B.C.G.; Adhikary, T.; Sahu, B.P.; Mitra, R.; Aich, S. Effect of Annealing Temperature on Microstructure and Mechanical Response of Sputter Deposited Ti-Zr-Mo High Temperature Shape Memory Alloy Thin Films. Appl. Surf. Sci. Adv. 2021, 6, 100137. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Beresnev, V.M.; Demianenko, A.A.; Baidak, V.S.; Komarov, F.F.; Kaverin, M.V.; Makhmudov, N.A.; Kolesnikov, D.A. Adhesive Strength, Superhardness, and the Phase and Elemental Compositions of Nanostructured Coatings Based on Ti-Hf-Si-N. Phys. Solid State 2012, 54, 1882–1890. [Google Scholar] [CrossRef]
- Samuel, S.; Nag, S.; Scharf, T.W.; Banerjee, R. Wear Resistance of Laser-Deposited Boride Reinforced Ti-Nb–Zr–Ta Alloy Composites for Orthopedic Implants. Mater. Sci. Eng. C 2008, 28, 414–420. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wu, S.-C.; Sung, Y.-C.; Ho, W.-F. The Structure and Mechanical Properties of As-Cast Zr–Ti Alloys. J. Alloys Compd. 2009, 488, 279–283. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Hirota, M.; Hayakawa, T. Influence of the Surface Chemical Composition Differences between Zirconia and Titanium with the Similar Surface Structure and Roughness on Bone Formation. Nanomaterials 2022, 12, 2478. [Google Scholar] [CrossRef]
- Martins Júnior, J.R.S.; Nogueira, R.A.; Araújo, R.O.d.; Donato, T.A.G.; Arana-Chavez, V.E.; Claro, A.P.R.A.; Moraes, J.C.S.; Buzalaf, M.A.R.; Grandini, C.R. Preparation and Characterization of Ti-15Mo Alloy Used as Biomaterial. Mater. Res. 2011, 14, 107–112. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Liu, Z.; Kong, F.; Chen, Z. Microstructures and Properties of Titanium Alloys Ti-Mo for Dental Use. Trans. Nonferrous Met. Soc. China 2006, 16, s824–s828. [Google Scholar] [CrossRef]
- Ha, M.-J.; Kim, H.; Choi, J.-H.; Kim, M.; Kim, W.-H.; Park, T.J.; Shong, B.; Ahn, J.-H. Ultralow-Resistivity Molybdenum-Carbide Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition Using a Cyclopentadienyl-Based Precursor. Chem. Mater. 2022, 34, 2576–2584. [Google Scholar] [CrossRef]
- Larhlimi, H.; Ghailane, A.; Makha, M.; Alami, J. Magnetron Sputtered Titanium Carbide-Based Coatings: A Review of Science and Technology. Vacuum 2022, 197, 110853. [Google Scholar] [CrossRef]
- Cheng, S.; Hou, T.; Zhang, D.; Wang, Z.; Yin, C.; Pan, X.; Liu, X.; Hu, S.; Wu, K. New Insights into the Formation Mechanism of the Multicomponent Carbides (Nb, M)C (M = Ti, Cr and Mn). J. Mater. Res. Technol. 2024, 28, 1022–1031. [Google Scholar] [CrossRef]
- Kärkkäinen, P.R.; Popov, G.; Hatanpää, T.; Kemppinen, A.; Kohopää, K.; Bagheri, M.; Komsa, H.; Heikkilä, M.; Mizohata, K.; Chundak, M.; et al. Atomic Layer Deposition of Molybdenum Carbide Thin Films. Adv. Mater. Interfaces 2024, 11, 2400270. [Google Scholar] [CrossRef]
- Braic, M.; Balaceanu, M.; Vladescu, A.; Zoita, C.N.; Braic, V. Deposition and Characterization of Multi-Principal-Element (CuSiTiYZr)C Coatings. Appl. Surf. Sci. 2013, 284, 671–678. [Google Scholar] [CrossRef]
- Zhao, C.; Xing, X.; Guo, J.; Shi, Z.; Zhou, Y.; Ren, X.; Yang, Q. Microstructure and Wear Resistance of (Nb,Ti)C Carbide Reinforced Fe Matrix Coating with Different Ti Contents and Interfacial Properties of (Nb,Ti)C/α-Fe. Appl. Surf. Sci. 2019, 494, 600–609. [Google Scholar] [CrossRef]
- Demirskyi, D.; Suzuki, T.S.; Yoshimi, K.; Vasylkiv, O. Synthesis and High-Temperature Properties of Medium-Entropy (Ti,Ta,Zr,Nb)C Using the Spark Plasma Consolidation of Carbide Powders. Open Ceram. 2020, 2, 100015. [Google Scholar] [CrossRef]
- Jiang, M.; Zheng, J.W.; Xiao, H.Y.; Liu, Z.J.; Zu, X.T. A Comparative Study of the Mechanical and Thermal Properties of Defective ZrC, TiC and SiC. Sci. Rep. 2017, 7, 9344. [Google Scholar] [CrossRef]
- Bhattacharya, N.; Unde, J.; Kulkarni, K. Use of Titanium and Its Alloy in Aerospace and Aircraft Industries. Int. J. Creat. Res. Thoughts 2020, 8, 2320–2882. [Google Scholar]
- Singh, P.; Pungotra, H.; Kalsi, N.S. On the Characteristics of Titanium Alloys for the Aircraft Applications. Mater. Today Proc. 2017, 4, 8971–8982. [Google Scholar] [CrossRef]
- Barry, J.; Byrne, G. Cutting Tool Wear in the Machining of Hardened Steels. Wear 2001, 247, 139–151. [Google Scholar] [CrossRef]
- Chayeuski, V.V.; Zhylinski, V.V.; Rudak, P.V.; Rusalsky, D.P.; Višniakov, N.; Černašėjus, O. Characteristics of ZrC/Ni-UDD Coatings for a Tungsten Carbide Cutting Tool. Appl. Surf. Sci. 2018, 446, 18–26. [Google Scholar] [CrossRef]
- Kuleshov, A.K.; Uglov, V.V.; Rusalsky, D.P. Hard and Wear-Resistant Niobium, Molybdenum Carbide Layered Coatings on WC-Co Tools Produced by Ion Bombardment and Cathodic Vacuum Arc Deposition. Surf. Coat. Technol. 2020, 395, 125920. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Onoprienko, A.A.; Skrynskyy, P.L.; Kozak, A.O.; Sinelnichenko, A.K.; Olifan, E.I.; Lytvyn, P.M.; Marchuk, O.K. Structure and Mechanical Properties of Ti–Al–C and Ti–Al–Si–C Films: Experimental and First-Principles Studies. J. Superhard Mater. 2021, 43, 100–110. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Yakushchenko, I.V.; Bondar, O.V.; Beresnev, V.M.; Oyoshi, K.; Ivasishin, O.M.; Amekura, H.; Takeda, Y.; Opielak, M.; Kozak, C. Irradiation Resistance, Microstructure and Mechanical Properties of Nanostructured (TiZrHfVNbTa)N Coatings. J. Alloys Compd. 2016, 679, 155–163. [Google Scholar] [CrossRef]
- Dalibón, E.L.; Brühl, S.P.; Silva Cardenas, I.; Prieto, G.; Tuckart, W. Tribological and Corrosion Behavior of Oxidized and Plasma Nitrided AISI 4140 Steel. Mater. Perform. Charact. 2023, 12. [Google Scholar] [CrossRef]
- Shin, D.; Liu, Z.-K. Enthalpy of Mixing for Ternary Fcc Solid Solutions from Special Quasirandom Structures. Calphad 2008, 32, 74–81. [Google Scholar] [CrossRef]
- Wolverton, C. Crystal Structure and Stability of Complex Precipitate Phases in Al–Cu–Mg–(Si) and Al–Zn–Mg Alloys. Acta Mater. 2001, 49, 3129–3142. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Billeter, S.R.; Curioni, A.; Andreoni, W. Efficient Linear Scaling Geometry Optimization and Transition-State Search for Direct Wavefunction Optimization Schemes in Density Functional Theory Using a Plane-Wave Basis. Comput. Mater. Sci. 2003, 27, 437–445. [Google Scholar] [CrossRef]
- Stokes, H.T.; Hatch, D.M. ISOTROPY Software Package; Brigham Young University: Provo, UT, USA, 2019. [Google Scholar]
- Golesorkhtabar, R.; Pavone, P.; Spitaler, J.; Puschnig, P.; Draxl, C. ElaStic: A Tool for Calculating Second-Order Elastic Constants from First Principles. Comput. Phys. Commun. 2013, 184, 1861–1873. [Google Scholar] [CrossRef]
- Niu, H.; Niu, S.; Oganov, A.R. Simple and Accurate Model of Fracture Toughness of Solids. J. Appl. Phys. 2019, 125, 065105. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Niu, H.; Li, D.; Li, Y. Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Turchi, P.E.A.; Shevchenko, V.I.; Ivashchenko, L.A.; Gorb, L.; Leszczynski, J. Stability and Mechanical Properties of Molybdenum Carbides and the Ti–Mo–C Solid Solutions: A First-Principles Study. Mater. Chem. Phys. 2022, 275, 125178. [Google Scholar] [CrossRef]
- Shikama, T.; Araki, H.; Fujitsuka, M.; Fukutomi, M.; Shinno, H.; Okada, M. Properties and Structure of Carbon Excess TixC1−x Deposited onto Molybdenum by Magnetron Sputtering. Thin Solid Film. 1983, 106, 185–194. [Google Scholar] [CrossRef]
- Wanjara, P.; Drew, R.A.; Root, J.; Yue, S. Evidence for Stable Stoichiometric Ti2C at the Interface in TiC Particulate Reinforced Ti Alloy Composites. Acta Mater. 2000, 48, 1443–1450. [Google Scholar] [CrossRef]
- Pelleg, J.; Zevin, L.Z.; Lungo, S.; Croitoru, N. Reactive-Sputter-Deposited TiN Films on Glass Substrates. Thin Solid Film. 1991, 197, 117–128. [Google Scholar] [CrossRef]
- Shafiq, M.; Hassan, M.; Shahzad, K.; Qayyum, A.; Ahmad, S.; Rawat, R.S.; Zakaullah, M. Pulsed Ion Beam-Assisted Carburizing of Titanium in Methane Discharge. Chin. Phys. B 2010, 19, 012801–012810. [Google Scholar] [CrossRef]
- Bagdasaryan, A.A.; Pshyk, A.V.; Coy, L.E.; Konarski, P.; Misnik, M.; Ivashchenko, V.I.; Kempiński, M.; Mediukh, N.R.; Pogrebnjak, A.D.; Beresnev, V.M.; et al. A New Type of (TiZrNbTaHf)N/MoN Nanocomposite Coating: Microstructure and Properties Depending on Energy of Incident Ions. Compos. Part B Eng. 2018, 146, 132–144. [Google Scholar] [CrossRef]
- Lewin, E.; Råsander, M.; Klintenberg, M.; Bergman, A.; Eriksson, O.; Jansson, U. Design of the Lattice Parameter of Embedded Nanoparticles. Chem. Phys. Lett. 2010, 496, 95–99. [Google Scholar] [CrossRef]
- Adjaoud, O.; Steinle-Neumann, G.; Burton, B.P.; van de Walle, A. First-Principles Phase Diagram Calculations for the HfC–TiC, ZrC–TiC, and HfC–ZrC Solid Solutions. Phys. Rev. B 2009, 80, 134112. [Google Scholar] [CrossRef]
- Ma, C.-H.; Huang, J.-H.; Chen, H. Residual Stress Measurement in Textured Thin Film by Grazing-Incidence X-Ray Diffraction. Thin Solid Film. 2002, 418, 73–78. [Google Scholar] [CrossRef]
- Gao, X.-H.; Guo, Z.-M.; Geng, Q.-F.; Ma, P.-J.; Wang, A.-Q.; Liu, G. Structure, Optical Properties and Thermal Stability of SS/TiC–ZrC/Al2O3 Spectrally Selective Solar Absorber. RSC Adv. 2016, 6, 63867–63873. [Google Scholar] [CrossRef]
- Bouabibsa, I.; Lamri, S.; Sanchette, F. Structure, Mechanical and Tribological Properties of Me-Doped Diamond-like Carbon (DLC) (Me = Al, Ti, or Nb) Hydrogenated Amorphous Carbon Coatings. Coatings 2018, 8, 370. [Google Scholar] [CrossRef]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J. NIST Standard Reference Database 20, Version 3.4; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Lin, H.; Shi, Z.; He, S.; Yu, X.; Wang, S.; Gao, Q.; Tang, Y. Heteronanowires of MoC–Mo 2 C as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Chem. Sci. 2016, 7, 3399–3405. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Xi, Q.; Chen, X.; Guo, D.; Ding, F.; Yang, Z.; Wang, S.; Li, J.; Huang, S. Molybdenum Carbide Nanoparticles Coated into the Graphene Wrapping N-Doped Porous Carbon Microspheres for Highly Efficient Electrocatalytic Hydrogen Evolution Both in Acidic and Alkaline Media. Adv. Sci. 2018, 5, 1700733. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Regmi, Y.N.; Leonard, B.M. Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2014, 53, 6407–6410. [Google Scholar] [CrossRef] [PubMed]
- Benko, E.; Barr, T.; Hardcastle, S.; Hoppe, E.; Bernasik, A.; Morgiel, J. XPS Study of the CBN–TiC System. Ceram. Int. 2001, 27, 637–643. [Google Scholar] [CrossRef]
- Tsotsos, C.; Baker, M.A.; Polychronopoulou, K.; Gibson, P.N.; Giannakopoulos, K.; Polycarpou, A.A.; Böbel, K.; Rebholz, C. Structure and Mechanical Properties of Low Temperature Magnetron Sputtered Nanocrystalline (Nc-)Ti(N,C)/Amorphous Diamond like Carbon (a-C:H) Coatings. Thin Solid Films 2010, 519, 24–30. [Google Scholar] [CrossRef]
- Krishna, D.N.G.; Philip, J. Review on Surface-Characterization Applications of X-Ray Photoelectron Spectroscopy (XPS): Recent Developments and Challenges. Appl. Surf. Sci. Adv. 2022, 12, 100332. [Google Scholar] [CrossRef]
- Pogrebnjak, A.; Ivashchenko, V.; Maksakova, O.; Buranich, V.; Konarski, P.; Bondariev, V.; Zukowski, P.; Skrynskyy, P.; Sinelnichenko, A.; Shelest, I.; et al. Comparative Measurements and Analysis of the Mechanical and Electrical Properties of Ti-Zr-C Nanocomposite: Role of Stoichiometry. Measurement 2021, 176, 109223. [Google Scholar] [CrossRef]
- Su, W.; Chen, L.; Huo, S.; Zhang, W.; Wang, Y.; Zhou, Y. Fracture Mode Transition from Intergranular to Transgranular in (TiZrNbTaCr)C: The Grain Boundary Purification Effect of Cr Carbide. J. Eur. Ceram. Soc. 2024, 44, 1881–1889. [Google Scholar] [CrossRef]
- Demyashev, G.M. Review: Transition Metal-Based Nanolamellar Phases. Prog. Mater. Sci. 2010, 55, 629–674. [Google Scholar] [CrossRef]
- Lu, K. Stabilizing Nanostructures in Metals Using Grain and Twin Boundary Architectures. Nat. Rev. Mater. 2016, 1, 16019. [Google Scholar] [CrossRef]
- Sánchez-López, J.C.; Martínez-Martínez, D.; Abad, M.D.; Fernández, A. Metal Carbide/Amorphous C-Based Nanocomposite Coatings for Tribological Applications. Surf. Coat. Technol. 2009, 204, 947–954. [Google Scholar] [CrossRef]
- Espinosa-Magaña, F.; Duarte-Moller, A.; Martınez-Sánchez, R.; Miki-Yoshida, M. Electron Energy Loss Spectroscopy of TiC, ZrC and HfC. J. Electron Spectros. Relat. Phenom. 2002, 125, 119–125. [Google Scholar] [CrossRef]
- Fides, M.; Hvizdoš, P.; Bystrický, R.; Kovalčíková, A.; Sedlák, R.; Sedláček, J.; Džunda, R. Microstructure, Fracture, Electrical Properties and Machinability of SiC-TiNbC Composites. J. Eur. Ceram. Soc. 2017, 37, 4315–4322. [Google Scholar] [CrossRef]
- Sun, S.; Fu, H.; Ping, X.; Guo, X.; Lin, J.; Lei, Y.; Wu, W.; Zhou, J. Formation Mechanism and Mechanical Properties of Titanium-Doped NbC Reinforced Ni-Based Composite Coatings. Appl. Surf. Sci. 2019, 476, 914–927. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.G.; Jiménez, O.; Alvarado-Hernández, F.; Flores, M.; Andrade, E.; Canto, C.E.; Ávila, C.; Espinoza-Beltrán, F. The Effect of C Content on the Mechanical Properties of Ti–Zr Coatings. J. Mech. Behav. Biomed. Mater. 2015, 49, 269–276. [Google Scholar] [CrossRef]
- López, J.M.; Gordillo-Vázquez, F.J.; Fernández, M.; Albella, J.M.; Cáceres, D.; Vergara, I. Investigation of TiC Thin Films Synthesised by Low Energy IBAD from Electron Evaporation of TiC Powder. Appl. Surf. Sci. 2001, 172, 110–116. [Google Scholar] [CrossRef]
- Meng, Q.N.; Wen, M.; Mao, F.; Nedfors, N.; Jansson, U.; Zheng, W.T. Deposition and Characterization of Reactive Magnetron Sputtered Zirconium Carbide Films. Surf. Coat. Technol. 2013, 232, 876–883. [Google Scholar] [CrossRef]
- Huang, Q.; Yoon, S.; Rusli; Yang, H.; Ahn, J.; Zhang, Q. Molybdenum-Containing Carbon Films Deposited Using the Screen Grid Technique in an Electron Cyclotron Resonance Chemical Vapor Deposition System. Diam. Relat. Mater. 2000, 9, 534–538. [Google Scholar] [CrossRef]
- Onoprienko, A.A.; Ivashchenko, V.I. Solid Solutions in Films of Ternary Carbides and Nitrides of Groups IV–VI Transition Metals: Structure and Properties (Review). J. Superhard Mater. 2021, 43, 231–247. [Google Scholar] [CrossRef]
- Cong, D.Y.; Huang, L.; Hardy, V.; Bourgault, D.; Sun, X.M.; Nie, Z.H.; Wang, M.G.; Ren, Y.; Entel, P.; Wang, Y.D. Low-Field-Actuated Giant Magnetocaloric Effect and Excellent Mechanical Properties in a NiMn-Based Multiferroic Alloy. Acta Mater. 2018, 146, 142–151. [Google Scholar] [CrossRef]
Name | FAr a | Pcb | Target 1 | Target 2 | ||
---|---|---|---|---|---|---|
[sccm] | [Pa] | U c [V] | I d [mA] | U [V] | I [mA] | |
Graphite | TiZrMo | |||||
S1 | 50 | 0.15 | 460 | 150 | 300 | 200 |
S2 | 50 | 0.15 | 480 | 200 | 300 | 200 |
S3 | 50 | 0.15 | 510 | 250 | 310 | 200 |
S4 | 50 | 0.15 | 540 | 300 | 320 | 200 |
Phase | a, [Å] | ΔV, [%] | EMIX, [eV/at] | B, [GPa] | G, [GPa] | E, [GPa] | B/G | ν | HV, [GPa] | KIC, [MPa·m1/2] |
---|---|---|---|---|---|---|---|---|---|---|
TiC | 4.317 | 0 | 0 | 245.2 | 179.1 | 432.4 | 1.37 | 0.21 | 25.7 | 3.38 |
ZrC | 4.708 | 29.7 | 0 | 221.7 | 163.5 | 393.7 | 1.36 | 0.20 | 24.6 | 2.99 |
MoC | 2.926 a 2.840 | 4.7 | 0 | 349.0 | 255.1 | 615.4 | 1.37 | 0.21 | - | 4.42 |
Ti0.5Zr0.5C | 4.527 | 15.3 | 0.069 | 233.7 | 166.1 | 402.8 | 1.41 | 0.21 | 23.8 | 3.11 |
Ti0.5Mo0.5C | 4.343 | 1.8 | 0.068 | 295.9 | 190.6 | 470.7 | 1.55 | 0.23 | 22.8 | 4.12 |
Zr0.5Mo0.5C | 4.543 | 16.5 | 0.116 | 238.8 | 130.6 | 331.4 | 1.83 | 0.27 | 14.0 | 2.85 |
Ti0.5Zr0.25Mo0.25C | 4.430 | 8.1 | 0.053 | 258.2 | 180.4 | 439.0 | 1.43 | 0.22 | 24.6 | 3.54 |
Ti0.25Zr0.5Mo0.25C | 4.528 | 15.4 | 0.070 | 246.3 | 167.7 | 410.0 | 1.47 | 0.22 | 22.5 | 3.29 |
Ti0.25Zr0.25Mo0.5C | 4.448 | 9.4 | 0.103 | 258.3 | 167.8 | 412.3 | 1.54 | 0.23 | 21.2 | 3.42 |
Ti0.33Zr0.33Mo0.33C | 4.467 | 10.8 | 0.078 | 259.6 | 173.2 | 425.1 | 1.50 | 0.23 | 22.4 | 3.50 |
Area [µm2] | Radius [mm] | Total Cycles | Load [N] | Distance [m] | Volume Lost [mm3] | Wear Factor |
---|---|---|---|---|---|---|
168.64 | 4.5 | 30,000 | 0.75 | 838.23 | 0.0047 | 2.119 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogrebnjak, A.; Buranych, V.; Ivashchenko, V.; Borba-Pogrebnjak, S.; Maksakova, O.; Caplovicová, M.; Goncharov, A.; Onoprienko, A.; Skrynskyy, P.; Sahul, M.; et al. Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance. Nanomaterials 2024, 14, 1986. https://doi.org/10.3390/nano14241986
Pogrebnjak A, Buranych V, Ivashchenko V, Borba-Pogrebnjak S, Maksakova O, Caplovicová M, Goncharov A, Onoprienko A, Skrynskyy P, Sahul M, et al. Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance. Nanomaterials. 2024; 14(24):1986. https://doi.org/10.3390/nano14241986
Chicago/Turabian StylePogrebnjak, Alexander, Volodymyr Buranych, Volodymyr Ivashchenko, Svitlana Borba-Pogrebnjak, Olga Maksakova, Maria Caplovicová, Alexander Goncharov, Alexei Onoprienko, Petro Skrynskyy, Martin Sahul, and et al. 2024. "Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance" Nanomaterials 14, no. 24: 1986. https://doi.org/10.3390/nano14241986
APA StylePogrebnjak, A., Buranych, V., Ivashchenko, V., Borba-Pogrebnjak, S., Maksakova, O., Caplovicová, M., Goncharov, A., Onoprienko, A., Skrynskyy, P., Sahul, M., Konarski, P., Budzynski, P., Kaminski, M., Opielak, M., Flock, D., Pelenovich, V., & Bing, Y. (2024). Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance. Nanomaterials, 14(24), 1986. https://doi.org/10.3390/nano14241986