Functional Nanocomposites: From Strategic Design to Applications
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rohuner, E. Size Matters: Why Nanomaterials are Different. Chem. Soc. Rev. 2006, 35, 583. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Sahu, S.; Anilkumar, P.; Kong, C.Y.; Sun, Y.-P. Linear and Nonlinear Optical Properties of Modified Graphene-based Materials. MRS Bull. 2012, 37, 1283. [Google Scholar] [CrossRef]
- Cao, L.; Meziani, M.J.; Sahu, S.; Sun, Y.-P. “Photoluminescence Properties of Graphene versus Other Carbon Nanomaterials”. Acc. Chem. Res. 2013, 46, 171. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov. 2020, 20, 101067. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2, 1821. [Google Scholar] [CrossRef]
- Chen, G.; Seo, J.; Yang, C.; Prasad, P.N. Nanochemistry and Nanomaterials for Photovoltaics. Chem. Soc. Rev. 2013, 42, 8304. [Google Scholar] [CrossRef]
- Cao, L.; Fernando, K.A.S.; Liang, W.; Seilkop, A.; Veca, L.M.; Sun, Y.-P.; Bunker, C. Carbon Dots for Energy Conversion Applications. J. Appl. Phys. 2019, 125, 220903. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Viswanath, I.V.K.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L.N. Review on Nanomaterials: Synthesis and Applications. Mater. Today Proc. 2019, 18, 2182. [Google Scholar] [CrossRef]
- El-Kady, M.M.; Ansari, I.; Arora, C.; Rai, N.; Soni, S.; Verma, D.K.; Singh, P.; Mahmoud, A.E.D. Nanomaterials: A Comprehensive Review of Applications, Toxicity, Impact, and Fate to Environment. J. Mol. Liq. 2023, 370, 121046. [Google Scholar] [CrossRef]
- Hossain, N.; Mobarak, M.H.; Mimona, M.A.; Islam, M.A.; Hossain, A.; Zohura, F.T.; Chowdhury, M.A. Advances and Significances of Nanoparticles in Semiconductor Applications—A Review. Results Eng. 2023, 19, 101347. [Google Scholar] [CrossRef]
- Minelli, C.; Lowe, S.B.; Stevens, M.M. Engineering Nanocomposite Materials for Cancer Therapy. Small 2010, 6, 2336. [Google Scholar] [CrossRef] [PubMed]
- Meziani, M.J.; Song, W.L.; Wang, P.; Lu, F.; Hou, Z.; Anderson, A.; Maimaiti, H.; Sun, Y.-P. Boron Nitride Nanomaterials for Thermal Management Applications. ChemPhysChem 2015, 16, 1339. [Google Scholar] [CrossRef] [PubMed]
- Siochi, E.; Harrison, J.S. Structural Nanocomposites for Aerospace Applications. MRS Bull. 2015, 40, 829. [Google Scholar] [CrossRef]
- Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hajlovac, M. Nanocomposites: A Brief Review. Health Technol. 2020, 10, 51. [Google Scholar] [CrossRef]
- Hassan, T.; Salam, A.; Khan, A.; Khan, S.U.; Khanzada, H.; Wasim, M.; Khan, M.Q.; Kim, I.S. Functional Nanocomposites and Their Potential Applications: A Review. J. Polym. Res. 2021, 28, 36. [Google Scholar] [CrossRef]
- Qadir, A.; Le, T.K.; Malik, M.; Min-Dianey, K.A.A.; Saeed, I.; Yu, Y.; Choi, J.R.; Pham, P.V. Representative 2D-material-based Nanocomposites and Their Emerging Applications: A Review. RSC Adv. 2021, 11, 23860. [Google Scholar] [CrossRef]
- Cao, L.; Bradford-Vialva, R.L.; Eckerle, R.M.; Herman, F.; Jones, C.; Klosterman, D. Development of Carbon Nanotube-Reinforced Nickel-Based Nanocomposites Using Laser Powder Bed Fusion. Adv. Eng. Mater. 2023, 25, 2201197. [Google Scholar] [CrossRef]
- Anwer, A.H.; Ahtesham, A.; Shoeb, M.; Mashkoor, F.; Ansari, M.Z.; Zhu, S.; Jeong, C. State-of-the-art Advances in Nanocomposite and Bio-nanocomposite Polymeric Materials: A Comprehensive Review. Adv. Colloid Interface Sci. 2023, 318, 102955. [Google Scholar] [CrossRef]
- Maier, C.; Leitgeb, V.; Egger, L.; Köck, A. Size-dependent Thresholds in CuO Nanowires: Investigation of Growth from Microstructured Thin Films for Gas Sensing. Nanomaterials 2024, 14, 1207. [Google Scholar] [CrossRef]
- Gence, L.; Quero, F.; Escalona, M.; Wheatley, R.; Seifert, B.; Diaz-Droguett, D.; Retamal, M.J.; Wallentowitz, S.; Volkmann, U.G.; Bhuyan, H. Wrinkled TiNAgNW Nanocomposites for High-Performance Flexible Electrodes on TEMPO-Oxidized Nanocellulose. Nanomaterials 2024, 14, 1178. [Google Scholar] [CrossRef]
- AlGhamdi, M.A.; Fouda, S.M.; Taymour, N.; Akhtar, S.; Khan, S.Q.; Ali, M.S.; Elakel, A.M.; Nassar, E.A.; Gad, M.M. Comparative Evaluation of TiO2 Nanoparticle Addition and Postcuring Time on the Flexural Properties and Hardness of Additively Fabricated Denture Base Resins. Nanomaterials 2023, 13, 3061. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Khattar, A.; Alramadan, D.M.; Al Dawood, Z.H.; Al Shehab, S.S.; Al Zaher, R.H.; Alzain, L.O.; Khan, S.Q.; Abdelfattah, M.Y. Nanoparticle-Modified 3D-Printed Denture Base Resins: Influence of Denture Cleansers on the Color Stability and Surface Roughness In Vitro. Nanomaterials 2024, 14, 891. [Google Scholar] [CrossRef] [PubMed]
- AlGhamdi, M.A.; Alatiyyah, F.M.; Almedarham, R.F.; Al Dawood, Z.H.; Alshaikhnasser, F.Y.; Alboryh, S.Y.; Khan, S.Q.; Abualsaud, R.; Gad, M.M. Impact of Nanoparticle Addition on the Surface and Color Properties of Three-Dimensional (3D) Printed Polymer-Based Provisional Restorations. Nanomaterials 2024, 14, 665. [Google Scholar] [CrossRef] [PubMed]
- Oberhausen, B.; Plohl, A.; Niebuur, B.-J.; Diebels, S.; Jung, A.; Kraus, T.; Kickelbick, G. Self-Healing Iron Oxide Polyelectrolyte Nanocomposites: Influence of Particle Agglomeration and Water on Mechanical Properties. Nanomaterials 2023, 13, 2983. [Google Scholar] [CrossRef] [PubMed]
- Bandaru, S.; Arora, D.; Ganesh, K.M.; Umrao, S.; Thomas, S.; Bhaskar, S.; Chakrabortty, S. Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review. Nanomaterials 2024, 14, 1387. [Google Scholar] [CrossRef]
- Singh, B.; Han, J.; Meziani, M.J.; Cao, L.; Yerra, S.; Collins, J.; Dumra, S.; Sun, Y.-P. Polymeric Nanocomposites of Boron Nitride Nanosheets for Enhanced Directional or Isotropic Thermal Transport Performance. Nanomaterials 2024, 14, 1259. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Meziani, M.J. Functional Nanocomposites: From Strategic Design to Applications. Nanomaterials 2024, 14, 1931. https://doi.org/10.3390/nano14231931
Cao L, Meziani MJ. Functional Nanocomposites: From Strategic Design to Applications. Nanomaterials. 2024; 14(23):1931. https://doi.org/10.3390/nano14231931
Chicago/Turabian StyleCao, Li, and Mohammed J. Meziani. 2024. "Functional Nanocomposites: From Strategic Design to Applications" Nanomaterials 14, no. 23: 1931. https://doi.org/10.3390/nano14231931
APA StyleCao, L., & Meziani, M. J. (2024). Functional Nanocomposites: From Strategic Design to Applications. Nanomaterials, 14(23), 1931. https://doi.org/10.3390/nano14231931