Ligand-to-Metal Ratio Governs Radical-Scavenging Ability of Malate-Stabilised Ceria Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CeO2 Sols
2.3. Methods of Characterisation
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
- Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 4094–4125. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Kang, P.M. Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases. Antioxidants 2020, 9, 1292. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid. Med. Cell. Longev. 2019, 2019, 7092151. [Google Scholar] [CrossRef]
- Wójcik, P.; Gęgotek, A.; Žarković, N.; Skrzydlewska, E. Oxidative Stress and Lipid Mediators Modulate Immune Cell Functions in Autoimmune Diseases. Int. J. Mol. Sci. 2021, 22, 723. [Google Scholar] [CrossRef] [PubMed]
- Mititelu, R.R.; Pădureanu, R.; Băcănoiu, M.; Pădureanu, V.; Docea, A.O.; Calina, D.; Barbulescu, A.L.; Buga, A.M. Inflammatory and Oxidative Stress Markers—Mirror Tools in Rheumatoid Arthritis. Biomedicines 2020, 8, 125. [Google Scholar] [CrossRef]
- Mo, W.; Liu, S.; Zhao, X.; Wei, F.; Li, Y.; Sheng, X.; Cao, W.; Ding, M.; Zhang, W.; Chen, X.; et al. ROS Scavenging Nanozyme Modulates Immunosuppression for Sensitized Cancer Immunotherapy. Adv. Healthc. Mater. 2023, 12, e2300191. [Google Scholar] [CrossRef] [PubMed]
- Comino-Sanz, I.M.; López-Franco, M.D.; Castro, B.; Pancorbo-Hidalgo, P.L. The Role of Antioxidants on Wound Healing: A Review of the Current Evidence. J. Clin. Med. 2021, 10, 3558. [Google Scholar] [CrossRef]
- Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D.G.; Deng, W. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid. Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.; Essa, E.A.; Zaki, R.M.; Elkordy, A.A. An Overview of the Antioxidant Effects of Ascorbic Acid and Alpha Lipoic Acid (in Liposomal Forms) as Adjuvant in Cancer Treatment. Antioxidants 2020, 9, 359. [Google Scholar] [CrossRef]
- Singh, N.; Sherin, G.R.; Mugesh, G. Antioxidant and Prooxidant Nanozymes: From Cellular Redox Regulation to Next-Generation Therapeutics. Angew. Chem. 2023, 135, e202301232. [Google Scholar] [CrossRef]
- Pan, J.; Wang, H.; Leng, F.; Zhang, F.; Yang, F.; Yuan, J.; Xing, Y.; Fan, W.; Zhou, Q.; Bian, W.; et al. 2022 Research Fronts: Development Trends and Key Research Questions in 11 Broad Research Areas. Bull. Chin. Acad. Sci. 2023, 38, 154–166. [Google Scholar] [CrossRef]
- Gomollón-Bel, F. IUPAC Top Ten Emerging Technologies in Chemistry 2022. Chem. Int. 2022, 44, 4–13. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, S.; Zeng, Y.; Shi, C.; Li, R. Albumin-Mediated Biomineralization of Shape-Controllable and Biocompatible Ceria Nanomaterials. ACS Appl. Mater. Interfaces 2017, 9, 6839–6848. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Xu, Q.; Li, B.; Dong, H.; Mou, Y. Polydopamine Modified Ceria Nanorods Alleviate Inflammation in Colitis by Scavenging ROS and Regulating Macrophage M2 Polarization. Int. J. Nanomed. 2023, 18, 4601–4616. [Google Scholar] [CrossRef] [PubMed]
- Kozlova, T.O.; Popov, A.L.; Romanov, M.V.; Savintseva, I.V.; Vasilyeva, D.N.; Baranchikov, A.E.; Ivanov, V.K. Ceric Phosphates and Nanocrystalline Ceria: Selective Toxicity to Melanoma Cells. Nanosyst. Phys. Chem. Math. 2023, 14, 223–230. [Google Scholar] [CrossRef]
- Damle, M.A.; Jakhade, A.P.; Chikate, R.C. Modulating Pro- and Antioxidant Activities of Nanoengineered Cerium Dioxide Nanoparticles against Escherichia coli. ACS Omega 2019, 4, 3761–3771. [Google Scholar] [CrossRef]
- Kim, Y.G.; Lee, Y.; Lee, N.; Soh, M.; Kim, D.; Hyeon, T. Ceria-Based Therapeutic Antioxidants for Biomedical Applications. Adv. Mater. 2023, 36, e2210819. [Google Scholar] [CrossRef]
- Bao, Q.; Hu, P.; Xu, Y.; Cheng, T.; Wei, C.; Pan, L.; Shi, J. Simultaneous Blood–Brain Barrier Crossing and Protection for Stroke Treatment Based on Edaravone-Loaded Ceria Nanoparticles. ACS Nano 2018, 12, 6794–6805. [Google Scholar] [CrossRef] [PubMed]
- Karakoti, A.S.; Munusamy, P.; Hostetler, K.; Kodali, V.; Kuchibhatla, S.; Orr, G.; Pounds, J.G.; Teeguarden, J.G.; Thrall, B.D.; Baer, D.R. Preparation and Characterization Challenges to Understanding Environmental and Biological Impacts of Ceria Nanoparticles. Surf. Interface Anal. 2012, 44, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Li, H.; Zhao, Y.; Wei, H.; Li, J.; Su, H. Nanoceria-Based Artificial Nanozymes: Review of Materials and Applications. ACS Appl. Nano Mater. 2022, 5, 14147–14170. [Google Scholar] [CrossRef]
- Popov, A.L.; Shcherbakov, A.B.; Zholobak, N.M.; Baranchikov, A.E.; Ivanov, V.K. Cerium Dioxide Nanoparticles as Third-Generation Enzymes (Nanozymes). Nanosyst. Phys. Chem. Math. 2017, 8, 760–781. [Google Scholar] [CrossRef]
- Li, X.; Qi, M.; Sun, X.; Weir, M.D.; Tay, F.R.; Oates, T.W.; Dong, B.; Zhou, Y.; Wang, L.; Xu, H.H.K. Surface Treatments on Titanium Implants via Nanostructured Ceria for Antibacterial and Anti-Inflammatory Capabilities. Acta Biomater. 2019, 94, 627–643. [Google Scholar] [CrossRef]
- Dou, Y.; Zhang, Y.; Lin, C.; Han, R.; Wang, Y.; Wu, D.; Zheng, J.; Lu, C.; Tang, L.; He, Y. pH-Responsive Theranostic Nanoplatform of Ferrite and Ceria Co-Engineered Nanoparticles for Anti-Inflammatory. Front. Bioeng. Biotechnol. 2022, 10, 983677. [Google Scholar] [CrossRef]
- Abramova, A.V.; Abramov, V.O.; Fedulov, I.S.; Baranchikov, A.E.; Kozlov, D.A.; Veselova, V.O.; Kameneva, S.V.; Ivanov, V.K.; Cravotto, G. Strong Antibacterial Properties of Cotton Fabrics Coated with Ceria Nanoparticles under High-Power Ultrasound. Nanomaterials 2021, 11, 2704. [Google Scholar] [CrossRef]
- Chigurupati, S.; Mughal, M.R.; Okun, E.; Das, S.; Kumar, A.; McCaffery, M.; Seal, S.; Mattson, M.P. Effects of Cerium Oxide Nanoparticles on the Growth of Keratinocytes, Fibroblasts and Vascular Endothelial Cells in Cutaneous Wound Healing. Biomaterials 2013, 34, 2194–2201. [Google Scholar] [CrossRef]
- Wu, H.; Li, F.; Wang, S.; Lu, J.; Li, J.; Du, Y.; Sun, X.; Chen, X.; Gao, J.; Ling, D. Ceria Nanocrystals Decorated Mesoporous Silica Nanoparticle Based ROS-Scavenging Tissue Adhesive for Highly Efficient Regenerative Wound Healing. Biomaterials 2018, 151, 66–77. [Google Scholar] [CrossRef]
- Cheng, F.; Wang, S.; Zheng, H.; Shen, H.; Zhou, L.; Yang, Z.; Li, Q.; Zhang, Q.; Zhang, H. Ceria Nanoenzyme-Based Hydrogel with Antiglycative and Antioxidative Performance for Infected Diabetic Wound Healing. Small Methods 2022, 6, e2200949. [Google Scholar] [CrossRef]
- Li, C.; Zhao, W.; Liu, B.; Xu, G.; Liu, L.; Lv, H.; Shang, D.; Yang, D.; Damirin, A.; Zhang, J. Cytotoxicity of Ultrafine Monodispersed Nanoceria on Human Gastric Cancer Cells. J. Biomed. Nanotechnol. 2014, 10, 1231–1241. [Google Scholar] [CrossRef]
- Bastos, V.; Ferreira de Oliveira, J.M.P.; Brown, D.; Jonhston, H.; Malheiro, E.; Daniel-da-Silva, A.L.; Duarte, I.F.; Santos, C.; Oliveira, H. The Influence of Citrate or PEG Coating on Silver Nanoparticle Toxicity to a Human Keratinocyte Cell Line. Toxicol. Lett. 2016, 249, 29–41. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, J.; Zhao, Y.; Zhu, L.; Luo, G.; Ge, B. Hollow CeO2 with ROS-Scavenging Activity to Alleviate Colitis in Mice. Int. J. Nanomed. 2021, 16, 6889–6904. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.M.; Asati, A.; Nath, S.; Kaittanis, C. Synthesis of Biocompatible Dextran-Coated Nanoceria with pH-Dependent Antioxidant Properties. Small 2008, 4, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Tombácz, E.; Tóth, I.Y.; Nesztor, D.; Illés, E.; Hajdú, A.; Szekeres, M.; Vékás, L. Adsorption of Organic Acids on Magnetite Nanoparticles, pH-Dependent Colloidal Stability and Salt Tolerance. Colloids Surf. A Physicochem. Eng. Asp. 2013, 435, 91–96. [Google Scholar] [CrossRef]
- Zhang, J.; Naka, T.; Ohara, S.; Kaneko, K.; Trevethan, T.; Shluger, A.; Adschiri, T. Surface Ligand Assisted Valence Change in Ceria Nanocrystals. Phys. Rev. B 2011, 84, 045411. [Google Scholar] [CrossRef]
- Collin, B.; Oostveen, E.; Tsyusko, O.V.; Unrine, J.M. Influence of Natural Organic Matter and Surface Charge on the Toxicity and Bioaccumulation of Functionalized Ceria Nanoparticles in Caenorhabditis Elegans. Environ. Sci. Technol. 2014, 48, 1280–1289. [Google Scholar] [CrossRef]
- Mudunkotuwa, I.A.; Grassian, V.H. Biological and Environmental Media Control Oxide Nanoparticle Surface Composition: The Roles of Biological Components (Proteins and Amino Acids), Inorganic Oxyanions and Humic Acid. Environ. Sci. Nano 2015, 2, 429–439. [Google Scholar] [CrossRef]
- Dupkalová, D.; Kosto, Y.; Kalinovych, V.; Deineko, A.; Franchi, S.; Nováková, J.; Matolínová, I.; Skála, T.; Prince, K.C.; Fučíková, A.; et al. Histidine- and Glycine-Functionalized Cerium Oxide Nanoparticles: Physicochemical Properties and Antiviral Activity. Appl. Surf. Sci. 2023, 636, 157793. [Google Scholar] [CrossRef]
- Molinari, M.; Symington, A.R.; Sayle, D.C.; Sakthivel, T.S.; Seal, S.; Parker, S.C. Computer-Aided Design of Nanoceria Structures as Enzyme Mimetic Agents: The Role of Bodily Electrolytes on Maximizing Their Activity. ACS Appl. Bio Mater. 2019, 2, 1098–1106. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Zhang, X.; Tang, J.; Liu, X.; Lin, Y.; Guo, D.; Zhang, Y.; Ju, S.; Fernández-Varo, G.; Wang, Y.-C.; et al. Conservation of the Enzyme-like Activity and Biocompatibility of CeO2 Nanozymes in Simulated Body Fluids. Nanoscale 2023, 15, 14365–14379. [Google Scholar] [CrossRef] [PubMed]
- McCormack, R.N.; Mendez, P.; Barkam, S.; Neal, C.J.; Das, S.; Seal, S. Inhibition of Nanoceria’s Catalytic Activity Due to Ce3+ Site-Specific Interaction with Phosphate Ions. J. Phys. Chem. C 2014, 118, 18992–19006. [Google Scholar] [CrossRef]
- Tang, X.; Liu, J.; Dong, W.; Li, P.; Li, L.; Lin, C.; Zheng, Y.; Hou, J.; Li, D. The Cardioprotective Effects of Citric Acid and L-Malic Acid on Myocardial Ischemia/Reperfusion Injury. Evid. Based Complement. Altern. Med. 2013, 2013, 820695. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xu, L.; Qian, H.; Wang, X.; Tao, Z. Polymalic Acid for Translational Nanomedicine. J. Nanobiotechnol. 2022, 20, 295. [Google Scholar] [CrossRef]
- Ding, H.; Inoue, S.; Ljubimov, A.V.; Patil, R.; Portilla-Arias, J.; Hu, J.; Konda, B.; Wawrowsky, K.A.; Fujita, M.; Karabalin, N.; et al. Inhibition of Brain Tumor Growth by Intravenous Poly(β-Malic Acid) Nanobioconjugate with pH-Dependent Drug Release. Proc. Natl. Acad. Sci. USA 2010, 107, 18143–18148. [Google Scholar] [CrossRef]
- Lee, B.-S.; Fujita, M.; Khazenzon, N.M.; Wawrowsky, K.A.; Wachsmann-Hogiu, S.; Farkas, D.L.; Black, K.L.; Ljubimova, J.Y.; Holler, E. Polycefin, a New Prototype of a Multifunctional Nanoconjugate Based on Poly(β-Malic Acid) for Drug Delivery. Bioconjug. Chem. 2006, 17, 317–326. [Google Scholar] [CrossRef]
- Zvereva, M.V.; Zhmurova, A.V. The Use of a Chemiluminescence in the Assessment of the Nanomaterials Antioxidant Activity. Biophys. Rev. 2023, 15, 963–969. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Lissi, E. Evaluation of Total Antioxidant Potential (TRAP) and Total Antioxidant Reactivity from Luminol-Enhanced Chemiluminescence Measurements. Free Radic. Biol. Med. 1995, 18, 153–158. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Teplonogova, M.A.; Ivanova, O.S.; Shekunova, T.O.; Ivonin, I.V.; Baranchikov, A.Y.; Ivanov, V.K. Facile Method for Fabrication of Surfactant-Free Concentrated CeO2 Sols. Mater. Res. Express 2017, 4, 055008. [Google Scholar] [CrossRef]
- Chaudhary, Y.S.; Panigrahi, S.; Nayak, S.; Satpati, B.; Bhattacharjee, S.; Kulkarni, N. Facile Synthesis of Ultra-Small Monodisperse Ceria Nanocrystals at Room Temperature and Their Catalytic Activity under Visible Light. J. Mater. Chem. 2010, 20, 2381. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Badertscher, M.; Bühlmann, P.; Pretsch, E. Structure Determination of Organic Compounds; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-93809-5. [Google Scholar]
- Wei, H.; Tang, J.; Chen, X.; Tang, Y.; Zhao, X.; Zuo, Y. Influence of Organic and Inorganic Cerium Salts on the Protective Performance of Epoxy Coating. Prog. Org. Coat. 2022, 166, 106763. [Google Scholar] [CrossRef]
- Alexander, S.; Gomez, V.; Barron, A.R. Carboxylation and Decarboxylation of Aluminum Oxide Nanoparticles Using Bifunctional Carboxylic Acids and Octylamine. J. Nanomater. 2016, 2016, 7950876. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, L.; Wu, Q.; Liu, Q.; Zou, L.; Yang, X.; Tang, K. Regulation of the Oxidase Mimetic Activity of Ceria Nanoparticles by Buffer Composition. Chem.—A Eur. J. 2023, 29, e202204071. [Google Scholar] [CrossRef] [PubMed]
- Dutta, B.; Checker, S.; Barick, K.C.; Salunke, H.G.; Gota, V.; Hassan, P.A. Malic Acid Grafted Fe3O4 Nanoparticles for Controlled Drug Delivery and Efficient Heating Source for Hyperthermia Therapy. J. Alloys Compd. 2021, 883, 160950. [Google Scholar] [CrossRef]
- Max, J.-J.; Chapados, C. Infrared Spectroscopy of Aqueous Carboxylic Acids: Malic Acid. J. Phys. Chem. A 2002, 106, 6452–6461. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mistry, B.D. A Handbook of Spectroscopic Data. Chemistry (UV, IR, PMR, CNMR and Mass Spectroscopy); Oxford Book Company: Oxford, UK, 2009; ISBN 978-81-89473-86-0. [Google Scholar]
- Opitz, P.; Jegel, O.; Nasir, J.; Rios-Studer, T.; Gazanis, A.; Pham, D.-H.; Domke, K.; Heermann, R.; Schmedt auf der Günne, J.; Tremel, W. Defect-Controlled Halogenating Properties of Lanthanide-Doped Ceria Nanozymes. Nanoscale 2022, 14, 4740–4752. [Google Scholar] [CrossRef]
- Xiong, Y.; Su, L.; Zhang, Z.; Zhao, S.; Ye, F. Dipeptide Surface Modification and Ultrasound Boosted Phosphatase-Like Activity of the Ceria Nanozyme: Dual Signal Enhancement for Colorimetric Sensors. ACS Sustain. Chem. Eng. 2023, 11, 525–535. [Google Scholar] [CrossRef]
- Jiang, L.; Tinoco, M.; Fernández-García, S.; Sun, Y.; Traviankina, M.; Nan, P.; Xue, Q.; Pan, H.; Aguinaco, A.; González-Leal, J.M.; et al. Enhanced Artificial Enzyme Activities on the Reconstructed Sawtoothlike Nanofacets of Pure and Pr-Doped Ceria Nanocubes. ACS Appl. Mater. Interfaces 2021, 13, 38061–38073. [Google Scholar] [CrossRef]
- Deus, R.C.; Cilense, M.; Foschini, C.R.; Ramirez, M.A.; Longo, E.; Simões, A.Z. Influence of Mineralizer Agents on the Growth of Crystalline CeO2 Nanospheres by the Microwave-Hydrothermal Method. J. Alloys Compd. 2013, 550, 245–251. [Google Scholar] [CrossRef]
- Ahmad, S.; Gopalaiah, K.; Chandrudu, S.N.; Nagarajan, R. Anion (Fluoride)-Doped Ceria Nanocrystals: Synthesis, Characterization, and Its Catalytic Application to Oxidative Coupling of Benzylamines. Inorg. Chem. 2014, 53, 2030–2039. [Google Scholar] [CrossRef]
- Malic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Malic-Acid#section=Chemical-and-Physical-Properties&fullscreen=true (accessed on 2 September 2024).
- Sozarukova, M.M.; Shestakova, M.A.; Teplonogova, M.A.; Izmailov, D.Y.; Proskurnina, E.V.; Ivanov, V.K. Quantification of Free Radical Scavenging Properties and SOD-Like Activity of Cerium Dioxide Nanoparticles in Biochemical Models. Russ. J. Inorg. Chem. 2020, 65, 597–605. [Google Scholar] [CrossRef]
- Vladimirov, G.K.; Sergunova, E.V.; Izmaylov, D.Y.; Vladimirov, Y.A. Chemiluminescent Determination of Total Antioxidant Capacity in Medicinal Plant Material. Bull. Russ. State Med. Univ. 2016, 2, 62–68. [Google Scholar] [CrossRef]
- Proskurnina, E.V.; Izmailov, D.Y.; Sozarukova, M.M.; Zhuravleva, T.A.; Leneva, I.A.; Poromov, A.A. Antioxidant Potential of Antiviral Drug Umifenovir. Molecules 2020, 25, 1577. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, A.V.; Proskurnina, E.V.; Vladimirov, Y.A. Determination of Antioxidants by Sensitized Chemiluminescence Using 2,2′-Azo-Bis(2-Amidinopropane). Mosc. Univ. Chem. Bull. 2012, 67, 127–132. [Google Scholar] [CrossRef]
- Datta, A.; Mishra, S.; Manna, K.; Das Saha, K.; Mukherjee, S.; Roy, S. Pro-Oxidant Therapeutic Activities of Cerium Oxide Nanoparticles in Colorectal Carcinoma Cells. ACS Omega 2020, 5, 9714–9723. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Schaefer, T.; Wen, L.; Herrmann, H. Temperature- and pH- Dependent OH Radical Reaction Kinetics of Tartaric and Mucic Acids in the Aqueous Phase. J. Phys. Chem. A 2022, 126, 6244–6252. [Google Scholar] [CrossRef]
- Van Den Berg, A.J.J.; Halkes, S.B.A.; Quarles Van Ufford, H.C.; Hoekstra, M.J.; Beukelman, C.J. A Novel Formulation of Metal Ions and Citric Acid Reduces Reactive Oxygen Species in Vitro. J. Wound Care 2003, 12, 413–418. [Google Scholar] [CrossRef]
- Wu, J.-L.; Wu, Q.-P.; Yang, X.-F.; Wei, M.-K.; Zhang, J.-M.; Huang, Q.; Zhou, X.-Y. L-Malate Reverses Oxidative Stress and Antioxidative Defenses in Liver and Heart of Aged Rats. Physiol. Res. 2008, 57, 261–268. [Google Scholar] [CrossRef]
- Lu, W.; Sun, X.; Gao, L.; Hu, X.; Song, H.; Kong, B. Study on the Characteristics and Mechanism of DL-Malic Acid in Inhibiting Spontaneous Combustion of Lignite and Bituminous Coal. Fuel 2022, 308, 122012. [Google Scholar] [CrossRef]
- Lissi, E.; Pascual, C.; Del Castillo, M.D. Luminol Luminescence Induced by 2,2′-Azo-Bis(2-Amidinopropane) Thermolysis. Free Radic. Res. Commun. 1992, 17, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Pota, G.; Silvestri, B.; Vitiello, G.; Gallucci, N.; Di Girolamo, R.; Scialla, S.; Raucci, M.G.; Ambrosio, L.; Di Napoli, M.; Zanfardino, A.; et al. Towards Nanostructured Red-Ox Active Bio-Interfaces: Bioinspired Antibacterial Hybrid Melanin-CeO2 Nanoparticles for Radical Homeostasis. Biomater. Adv. 2023, 153, 213558. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, Q.; Garcia-Rojas, D.; Ling, V.; Masterson, C.M.; Bi, Y.; Xiao, Z.; Guo, X.; Villanova, J.; Dunn, J.; et al. Increasing the Antioxidant Capacity of Ceria Nanoparticles with Catechol-Grafted Poly(Ethylene Glycol). J. Mater. Chem. B 2022, 10, 10042–10053. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dong, Y.; Pu, X.; Yin, X. Fabrication of Anti-Oxidant Curcumin Loaded Ceria Nanoclusters for the Novel Delivery System to Prevention of Selenite-Induced Cataract Therapy in Alleviating Diabetic Cataract. Process Biochem. 2022, 120, 239–249. [Google Scholar] [CrossRef]
- Kang, D.-W.; Kim, C.K.; Jeong, H.-G.; Soh, M.; Kim, T.; Choi, I.-Y.; Ki, S.-K.; Kim, D.Y.; Yang, W.; Hyeon, T.; et al. Biocompatible Custom Ceria Nanoparticles against Reactive Oxygen Species Resolve Acute Inflammatory Reaction after Intracerebral Hemorrhage. Nano Res. 2017, 10, 2743–2760. [Google Scholar] [CrossRef]
- Kwon, H.J.; Cha, M.-Y.; Kim, D.; Kim, D.K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-Targeting Ceria Nanoparticles as Antioxidants for Alzheimer’s Disease. ACS Nano 2016, 10, 2860–2870. [Google Scholar] [CrossRef]
- Lo Scalzo, R. Organic Acids Influence on DPPH Scavenging by Ascorbic Acid. Food Chem. 2008, 107, 40–43. [Google Scholar] [CrossRef]
- Rajendran, R.; Gopal, S.; Masood, H.; Vivek, P.; Deb, K. Regenerative Potential of Dental Pulp Mesenchymal Stem Cells Harvested from High Caries Patient’s Teeth. J. Stem Cells 2013, 8, 25–41. [Google Scholar]
- Kushnerev, E.; Shawcross, S.G.; Hillarby, M.C.; Yates, J.M. High-Plasticity Mesenchymal Stem Cells Isolated from Adult-Retained Primary Teeth and Autogenous Adult Tooth Pulp—A Potential Source for Regenerative Therapies? Arch. Oral Biol. 2016, 62, 43–48. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Ivanov, V.K.; Zholobak, N.M.; Ivanova, O.S.; Krysanov, E.Y.; Baranchikov, A.E.; Spivak, N.Y.; Tretyakov, Y.D. Nanocrystalline Ceria Based Materials—Perspectives for Biomedical Application. Biophysics 2011, 56, 987–1004. [Google Scholar] [CrossRef]
- Popov, A.L.; Popova, N.R.; Selezneva, I.I.; Akkizov, A.Y.; Ivanov, V.K. Cerium Oxide Nanoparticles Stimulate Proliferation of Primary Mouse Embryonic Fibroblasts In Vitro. Mater. Sci. Eng. C 2016, 68, 406–413. [Google Scholar] [CrossRef] [PubMed]
DXRD, Å | a, Å | TPSA *, Å2 | ligand:CeO2 |
---|---|---|---|
28 | 5.441 | 94.8 | 0.18:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippova, A.D.; Baranchikov, A.E.; Teplonogova, M.A.; Savintseva, I.V.; Popov, A.L.; Ivanov, V.K. Ligand-to-Metal Ratio Governs Radical-Scavenging Ability of Malate-Stabilised Ceria Nanoparticles. Nanomaterials 2024, 14, 1908. https://doi.org/10.3390/nano14231908
Filippova AD, Baranchikov AE, Teplonogova MA, Savintseva IV, Popov AL, Ivanov VK. Ligand-to-Metal Ratio Governs Radical-Scavenging Ability of Malate-Stabilised Ceria Nanoparticles. Nanomaterials. 2024; 14(23):1908. https://doi.org/10.3390/nano14231908
Chicago/Turabian StyleFilippova, Arina D., Alexander E. Baranchikov, Maria A. Teplonogova, Irina V. Savintseva, Anton L. Popov, and Vladimir K. Ivanov. 2024. "Ligand-to-Metal Ratio Governs Radical-Scavenging Ability of Malate-Stabilised Ceria Nanoparticles" Nanomaterials 14, no. 23: 1908. https://doi.org/10.3390/nano14231908
APA StyleFilippova, A. D., Baranchikov, A. E., Teplonogova, M. A., Savintseva, I. V., Popov, A. L., & Ivanov, V. K. (2024). Ligand-to-Metal Ratio Governs Radical-Scavenging Ability of Malate-Stabilised Ceria Nanoparticles. Nanomaterials, 14(23), 1908. https://doi.org/10.3390/nano14231908