Enhancing the Performance and Stability of Li-CO2 Batteries Through LAGTP Solid Electrolyte and MWCNT/Ru Cathode Integration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of LAGTP Pellet
2.2. Preparation of the Cathode (MWCNT and MWCNT/Ru Powder)
2.3. Li-CO2 Cell Assembly Procedure
2.4. Characterization of Electrochemical Performance
2.5. Material Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, F.; Ren, S.; Mu, X.; Liu, Y.; Zhang, X.; He, P.; Zhou, H. Towards a Stable Li-CO2 Battery: The Effects of CO2 to the Li Metal Anode. Energy Storage Mater. 2020, 26, 443–447. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Bhatti, M.A.; Tang, H.; Syam, M.S.; Awwad, E.M.; Sharaf, M.; Ghadi, Y.Y. Global Production Patterns: Understanding the Relationship between Greenhouse Gas Emissions, Agriculture Greening and Climate Variability. Environ. Res. 2024, 245, 118049. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, X.; Xue, H.; Jia, L.; Xu, Y.; Tao, Y.; Yan, Y.; Fan, X.; He, J.; Wang, T. Recent Advances in the Mechanism and Catalyst Design in the Research of Aprotic, Photo-Assisted, and Solid-State Li-CO2 Batteries. Inorg. Chem. Front. 2024, 11, 5833–5857. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, Y.; Chen, B.; Han, X.; He, F.; He, C.; Hu, W.; Zhou, G.; Zhao, N. Routes to Bidirectional Cathodes for Reversible Aprotic Alkali Metal–CO2 Batteries. Adv. Mater. 2024, 36, 2410704. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, S.; Li, L.; Dan, B.; Wang, D.; Liu, X. Minireview on Achieving Low Charge Overpotential in Li-CO2 Batteries with Advancing Cathode Materials and Electrolytes. Energy Fuels 2024, 38, 2743–2758. [Google Scholar] [CrossRef]
- Pan, Q.; Ma, X.; Wang, H.; Shu, Y.; Liu, H.; Yang, L.; Li, W.; Liu, J.; Wu, Y.; Mao, Y.; et al. Approaching Splendid Catalysts for Li-CO2 Battery from the Theory to Practical Designing: A Review. Adv. Mater. 2024, 36, 2406905. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Liu, Y.; Huang, Y.; Wang, K.; Liu, M.; Li, W. Enhanced Co3O4 Nanoflakes Reactivity via Integrated Al-Doping and Metal Vacancy Engineering for Large Capacity Li-CO2 Batteries. Nano Energy 2024, 129, 109979. [Google Scholar] [CrossRef]
- Liang, J.; Luo, J.; Sun, Q.; Yang, X.; Li, R.; Sun, X. Recent Progress on Solid-State Hybrid Electrolytes for Solid-State Lithium Batteries. Energy Storage Mater. 2019, 21, 308–334. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, D.; Li, P.; Guo, X.; Wang, C.; Kang, F.; Li, B.; Wang, G. High-Performance Quasi-Solid-State MXene-Based Li–I Batteries. ACS Cent. Sci. 2019, 5, 365–373. [Google Scholar] [CrossRef]
- Ahmad, N.; Fan, C.; Faheem, M.; Liang, X.; Xiao, Y.; Cao, X.; Zeng, C.; Dong, Q.; Yang, W. Key Challenges and Advancements toward Fast-Charging All-Solid-State Lithium Batteries. Green Chem. 2024, 26, 9529–9553. [Google Scholar] [CrossRef]
- Yang, S.-J.; Hu, J.-K.; Jiang, F.-N.; Yuan, H.; Park, H.S.; Huang, J.-Q. Safer Solid-State Lithium Metal Batteries: Mechanisms and Strategies. InfoMat 2024, 6, e12512. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, J.; Fan, L.; Zhang, J.; Li, X. Recent Advances in Li1+xAlxTi2−x(PO4)3 Solid-State Electrolyte for Safe Lithium Batteries. Energy Storage Mater. 2019, 19, 379–400. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, W.; Su, X.; Li, J.; Su, M.; Zhou, X.; Sheldon, B.W.; Lu, W. Recent Advances in Conduction Mechanisms, Synthesis Metho ds, and Improvement Strategies for Li1+xAlxTi2−x(PO4)3 Solid Electrolyte for All-Solid-State Lithium Batteries. Adv. Energy Mater. 2023, 13, 2203440. [Google Scholar] [CrossRef]
- Yin, J.-H.; Zhu, H.; Yu, S.-J.; Dong, Y.-B.; Wei, Q.-Y.; Xu, G.-Q.; Xiong, Y.; Qian, Y. Recent Advances of LATP and Their NASICON Structure as a Solid-State Electrolyte for Lithium-Ion Batteries. Adv. Eng. Mater. 2023, 25, 2300566. [Google Scholar] [CrossRef]
- Baek, J.; Yoon, B.; Jeong, H.; Jeong, J.; Mamidi, S.; Seo, H.-K.; Lee, C.-R.; Seo, I. Dependences of Ionic Conductivity and Activation Energy on Germanium Content in Superionic Li1.4Al0.4GexTi(1.6−x)(PO4)3 Solid Electrolytes. J. Electroanal. Chem. 2022, 920, 116631. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Li, L.; Li, W.; Zou, C.; Jin, H.; Wang, S.; Chou, S.-L. Facile Synthesis of Birnessite δ-MnO2 and Carbon Nanotube Composites as Effective Catalysts for Li-CO2 Batteries. ACS Appl. Mater. Interfaces 2021, 13, 16585–16593. [Google Scholar] [CrossRef]
- Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J.; Zhou, H. A Reversible Lithium–CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972–978. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, Z.; Jiang, J.; Wang, J.; Song, X.; He, Q.; Ding, W.; Wei, Z. Lattice-Confined Ru Clusters with High CO Tolerance and Activity for the Hydrogen Oxidation Reaction. Nat. Catal. 2020, 3, 454–462. [Google Scholar] [CrossRef]
- Nakajima, H.; Kobashi, K.; Zhou, Y.; Zhang, M.; Okazaki, T. Quantitative Analysis of the Correlation between Sp3 Bonds and Functional Groups in Covalently Functionalized Single-Walled Carbon Nanotubes. Carbon 2024, 216, 118495. [Google Scholar] [CrossRef]
- Li, J.; Qiao, Y.; Li, D.; Zhang, S.; Liu, P. Improving Interfacial and Mechanical Properties of Glass Fabric/Polyphenylene Sulfide Composites via Grafting Multi-Walled Carbon Nanotubes. RSC Adv. 2019, 9, 32634–32643. [Google Scholar] [CrossRef]
- Mayor, L.C.; Ben Taylor, J.; Magnano, G.; Rienzo, A.; Satterley, C.J.; O’Shea, J.N.; Schnadt, J. Photoemission, Resonant Photoemission, and x-Ray Absorption of a Ru(II) Complex Adsorbed on Rutile TiO2(110) Prepared by in Situ Electrospray Deposition. J. Chem. Phys. 2008, 129, 114701. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jiang, X.; Pan, M.; Shi, Y. Nano-Scale Pore Structure and Its Multi-Fractal Characteristics of Tight Sandstone by N2 Adsorption/Desorption Analyses: A Case Study of Shihezi Formation from the Sulige Gas Filed, Ordos Basin, China. Minerals 2020, 10, 377. [Google Scholar] [CrossRef]
- Tóth, A.; Voitko, K.V.; Bakalinska, O.; Prykhod’ko, G.P.; Bertóti, I.; Martínez-Alonso, A.; Tascón, J.M.D.; Gun’ko, V.M.; László, K. Morphology and Adsorption Properties of Chemically Modified MWCNT Probed by Nitrogen, n-Propane and Water Vapor. Carbon 2012, 50, 577–585. [Google Scholar] [CrossRef]
- Ma, B.; Li, D.; Wang, X.; Lin, K. Fast and Safe Synthesis of Micron Germanium in an Ammonia Atmosphere Using Mo2N as Catalyst. RSC Adv. 2018, 8, 35753–35758. [Google Scholar] [CrossRef] [PubMed]
- Hupfer, T.; Bucharsky, E.C.; Schell, K.G.; Hoffmann, M.J. Influence of the Secondary Phase LiTiOPO4 on the Properties of Li1+xAlxTi2−x(PO4)3 (x = 0; 0.3). Solid State Ion. 2017, 302, 49–53. [Google Scholar] [CrossRef]
- Tkalcevic, M.; Boršćak, D.; Periša, I.; Radovic, I.; Saric, I.; Bernstorff, S.; Micetic, M. Multiple Exciton Generation in 3D-Ordered Networks of Ge Quantum Wires in Alumina Matrix. Materials 2022, 15, 5353. [Google Scholar] [CrossRef]
- Gao, A.; Jiang, P.; Duan, M.; Lai, H.; Zhou, Y.; Zhang, X.; Yang, M.; Gong, L.; Chen, J.; Liu, S.; et al. Interphase Design Enabling Stable Cycling of All-Solid-State Lithium Metal Batteries by in-Situ X-Ray Photoelectron Spectroscopy Lithium Metal Sputtering. J. Power Sources 2024, 602, 234299. [Google Scholar] [CrossRef]
- Jackman, S.D.; Cutler, R.A. Effect of Microcracking on Ionic Conductivity in LATP. J. Power Sources 2012, 218, 65–72. [Google Scholar] [CrossRef]
- Vinod Chandran, C.; Pristat, S.; Witt, E.; Tietz, F.; Heitjans, P. Solid-State NMR Investigations on the Structure and Dynamics of the Ionic Conductor Li1+xAlxTi2−x(PO4)3 (0.0 ≤ x ≤ 1.0). J. Phys. Chem. C 2016, 120, 8436–8442. [Google Scholar] [CrossRef]
- Kang, J.; Gu, R.; Guo, X.; Li, J.; Sun, H.; Zhang, L.; Jing, R.; Jin, L.; Wei, X. Effect of SnO–P2O5–MgO Glass Addition on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte. Ceram. Int. 2022, 48, 157–163. [Google Scholar] [CrossRef]
- Zeng, Y.; Ouyang, B.; Liu, J.; Byeon, Y.-W.; Cai, Z.; Miara, L.J.; Wang, Y.; Ceder, G. High-Entropy Mechanism to Boost Ionic Conductivity. Science 2022, 378, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- Na, D.; Kampara, R.K.; Yu, D.; Yoon, B.; Martin, S.W.; Seo, I. Li1.4Al0.4Ti1.6(PO4)3 Inorganic Solid Electrolyte for All-Solid-State Li-CO2 Batteries with MWCNT and Ru Nanoparticle Catalysts. Mater. Today Energy 2023, 101418. [Google Scholar] [CrossRef]
- Savunthari, K.V.; Chen, C.-H.; Chen, Y.-R.; Tong, Z.; Iputera, K.; Wang, F.-M.; Hsu, C.-C.; Wei, D.-H.; Hu, S.-F.; Liu, R.-S. Effective Ru/CNT Cathode for Rechargeable Solid-State Li-CO2 Batteries. ACS Appl. Mater. Interfaces 2021, 13, 44266–44273. [Google Scholar] [CrossRef] [PubMed]
- Benabed, Y.; Rioux, M.; Rousselot, S.; Hautier, G.; Dollé, M. Assessing the Electrochemical Stability Window of NASICON-Type Solid Electrolytes. Front. Energy Res. 2021, 9, 682008. [Google Scholar] [CrossRef]
- Wang, J.; He, T.; Yang, X.; Cai, Z.; Wang, Y.; Lacivita, V.; Kim, H.; Ouyang, B.; Ceder, G. Design Principles for NASICON Super-Ionic Conductors. Nat. Commun. 2023, 14, 5210. [Google Scholar] [CrossRef]
- Na, D.; Jeong, H.; Baek, J.; Yu, H.; Lee, S.-M.; Lee, C.-R.; Seo, H.-K.; Kim, J.-K.; Seo, I. Highly Safe and Stable Li-CO2 Batteries Using Conducting Ceramic Solid Electrolyte and MWCNT Composite Cathode. Electrochim. Acta 2022, 419, 140408. [Google Scholar] [CrossRef]
- Du, Y.; Liu, Y.; Yang, S.; Li, C.; Cheng, Z.; Qiu, F.; He, P.; Zhou, H. A Rechargeable All-Solid-State Li-CO2 Battery Using a Li1.5Al0.5Ge1.5(PO4)3 Ceramic Electrolyte and Nanoscale RuO2 Catalyst. J. Mater. Chem. A 2021, 9, 9581–9585. [Google Scholar] [CrossRef]
- Yoon, B.; Baek, J.; Na, D.; Yu, D.; Kampara, R.K.; Seo, H.-K.; Lee, D.Y.; Seo, I. Li1.4Al0.4Ge0.1Ti1.5(PO4)3: A Stable Solid Electrolyte for Li-CO2 Batteries. Mater. Chem. Phys. 2024, 322, 129583. [Google Scholar] [CrossRef]
- Mamidi, S.; Na, D.; Yoon, B.; Sharma, H.; Pathak, A.D.; Sahu, K.K.; Lee, D.Y.; Lee, C.-R.; Seo, I. Safe and Stable Li-CO2 Battery with Metal-Organic Framework Derived Cathode Composite and Solid Electrolyte. J. Power Sources 2024, 591, 233867. [Google Scholar] [CrossRef]
- Zhu, Q.-C.; Ma, J.; Huang, J.-H.; Mao, D.-Y.; Wang, K.-X. Realizing Long-Cycling Solid-State Li-CO2 Batteries Using Zn-Doped LATP Ceramic Electrolytes. Chem. Eng. J. 2024, 482, 148977. [Google Scholar] [CrossRef]
- Pipes, R.; Bhargav, A.; Manthiram, A. Phenyl Disulfide Additive for Solution-Mediated Carbon Dioxide Utilization in Li-CO2 Batteries. Adv. Energy Mater. 2019, 9, 1900453. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Yang, L.; Zhang, F.; Li, R.; Dong, H. Ruthenium Nanosheets Decorated Cobalt Foam for Controllable Hydrogen Production from Sodium Borohydride Hydrolysis. Catal. Lett. 2022, 152, 1386–1391. [Google Scholar] [CrossRef]
- Hornsveld, N.; Put, B.; Kessels, W.M.M.; Vereecken, P.M.; Creatore, M. Plasma-Assisted and Thermal Atomic Layer Deposition of Electrochemically Active Li2CO3. RSC Adv. 2017, 7, 41359–41368. [Google Scholar] [CrossRef]
- Na, D.; Kampara, R.K.; Yu, D.; Yoon, B.; Lee, D.Y.; Seo, I. Exploring Li-CO2 Batteries with Electrospun PAN-Derived Carbon Nanofibers and Li1.4Al0.4Ti1.6(PO4)3 Solid-State Electrolyte. J. Alloys Compd. 2024, 970, 172559. [Google Scholar] [CrossRef]
- Viswanath, P.; Yoshimura, M. Light-Induced Reversible Phase Transition in Polyvinylidene Fluoride-Based Nanocomposites. SN Appl. Sci. 2019, 1, 1519. [Google Scholar] [CrossRef]
Temperature (°C) | Total Resistance (Ω) | Total Ionic Conductivity (mS cm−1) |
---|---|---|
20 | 79.9 | 1.04 |
40 | 53.2 | 1.56 |
60 | 27.3 | 3.03 |
80 | 16.5 | 5.02 |
100 | 9.4 | 8.80 |
S.No | Cathode Material | Inorganic Electrolyte | Cycle Life | Ref. |
---|---|---|---|---|
1 | MWCNT | LATP | 50 | [36] |
2 | SWCNT/RuO2 | LAGP | 30 | [37] |
3 | Ru/CNT | LAGP | 45 | [33] |
4 | MWCNT | LAGTP | 60 | [38] |
5 | MWCNT /Ru | LATP | 50 | [32] |
6 | Co3O4-derived MOF | LATP | 100 | [39] |
7 | Fe3C/N-doped CNT | Zn-doped LATP | 180 | [40] |
8 | MWCNT/Ru | LAGTP | 200 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, D.; Yu, D.; Kim, H.; Yoon, B.; Lee, D.D.; Seo, I. Enhancing the Performance and Stability of Li-CO2 Batteries Through LAGTP Solid Electrolyte and MWCNT/Ru Cathode Integration. Nanomaterials 2024, 14, 1894. https://doi.org/10.3390/nano14231894
Na D, Yu D, Kim H, Yoon B, Lee DD, Seo I. Enhancing the Performance and Stability of Li-CO2 Batteries Through LAGTP Solid Electrolyte and MWCNT/Ru Cathode Integration. Nanomaterials. 2024; 14(23):1894. https://doi.org/10.3390/nano14231894
Chicago/Turabian StyleNa, Dan, Dohyeon Yu, Hwan Kim, Baeksang Yoon, David D. Lee, and Inseok Seo. 2024. "Enhancing the Performance and Stability of Li-CO2 Batteries Through LAGTP Solid Electrolyte and MWCNT/Ru Cathode Integration" Nanomaterials 14, no. 23: 1894. https://doi.org/10.3390/nano14231894
APA StyleNa, D., Yu, D., Kim, H., Yoon, B., Lee, D. D., & Seo, I. (2024). Enhancing the Performance and Stability of Li-CO2 Batteries Through LAGTP Solid Electrolyte and MWCNT/Ru Cathode Integration. Nanomaterials, 14(23), 1894. https://doi.org/10.3390/nano14231894