Free-Standing Carbon Nanofiber Films with Supported Cobalt Phosphide Nanoparticles as Cathodes for Hydrogen Evolution Reaction in a Microbial Electrolysis Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Synthesis
2.2. Synthesis of Free-Standing Cobalt Phosphide-Supported CNF Films
2.3. Physicochemical Characterization
2.4. Electrochemical Characterization
2.5. Calculations
3. Results and Discussion
3.1. Synthesis
3.2. Physicochemical Characterizations
3.3. Electrochemical Characterizations
3.4. Electrochemical Stability Evaluation
3.5. In Situ Bio-Electrochemical Reactor Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Available online: https://Commission.Europa.Eu/Strategy-and-Policy/Priorities-2019-2024/European-Green-Deal/Repowereu-Affordable-Secure-and-Sustainable-Energy-Europe_en (accessed on 5 September 2024).
- Yu, Z.; Duan, Y.; Feng, X.; Yu, X.; Gao, M.; Yu, S. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021, 33, 2007100. [Google Scholar] [CrossRef] [PubMed]
- El-Shafie, M. Hydrogen Production by Water Electrolysis Technologies: A Review. Results Eng. 2023, 20, 101426. [Google Scholar] [CrossRef]
- Kadier, A.; Simayi, Y.; Abdeshahian, P.; Azman, N.F.; Chandrasekhar, K.; Kalil, M.S. A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production. Alex. Eng. J. 2016, 55, 427–443. [Google Scholar] [CrossRef]
- Escapa, A.; Mateos, R.; Martínez, E.J.; Blanes, J. Microbial Electrolysis Cells: An Emerging Technology for Wastewater Treatment and Energy Recovery. From Laboratory to Pilot Plant and Beyond. Renew. Sustain. Energy Rev. 2016, 55, 942–956. [Google Scholar] [CrossRef]
- Rabaey, K.; Rozendal, R.A. Microbial Electrosynthesis—Revisiting the Electrical Route for Microbial Production. Nat. Rev. Microbiol. 2010, 8, 706–716. [Google Scholar] [CrossRef]
- Wagner, R.C.; Regan, J.M.; Oh, S.-E.; Zuo, Y.; Logan, B.E. Hydrogen and Methane Production from Swine Wastewater Using Microbial Electrolysis Cells. Water Res. 2009, 43, 1480–1488. [Google Scholar] [CrossRef]
- Guerrero-Sodric, O.; Baeza, J.A.; Guisasola, A. Exploring Key Operational Factors for Improving Hydrogen Production in a Pilot-Scale Microbial Electrolysis Cell Treating Urban Wastewater. Chem. Eng. J. 2023, 469, 144001. [Google Scholar] [CrossRef]
- Raveendran, A. A Comprehensive Review on the Electrochemical Parameters and Recent Material Development of Electrochemical Water Splitting Electrocatalysts. RSC Adv. 2023, 13, 3843. [Google Scholar] [CrossRef]
- Wang, S. Hydrogen Production from Water Electrolysis: Role of Catalysts. Nano Converg. 2021, 8, 4. [Google Scholar] [CrossRef]
- Fu, X.; Shi, R.; Jiao, S.; Li, M.; Li, Q. Structural Design for Electrocatalytic Water Splitting to Realize Industrial-Scale Deployment: Strategies, Advances, and Perspectives. J. Energy Chem. 2022, 70, 129–153. [Google Scholar] [CrossRef]
- Bhunia, K.; Chandra, M.; Kumar Sharma, S.; Pradhan, D.; Kim, S.-J. A Critical Review on Transition Metal Phosphide Based Catalyst for Electrochemical Hydrogen Evolution Reaction: Gibbs Free Energy, Composition, Stability, and True Identity of Active Site. Coord. Chem. Rev. 2023, 478, 214956. [Google Scholar] [CrossRef]
- Yin, H.; Rong, F.; Xie, Y. A Review of Typical Transition Metal Phosphides Electrocatalysts for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2024, 52, 350–375. [Google Scholar] [CrossRef]
- Yoon, S.J.; Lee, S.J.; Kim, M.H.; Park, H.A.; Kang, H.S.; Bae, S.-Y.; Jeon, I.-Y. Recent Tendency on Transition-Metal Phosphide Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Media. Nanomaterials 2023, 13, 2613. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Bifunctional Cobalt Phosphide Nanoparticles with Convertible Surface Structure for Efficient Electrocatalytic Water Splitting in Alkaline Solution. J. Catal. 2019, 371, 262–269. [Google Scholar] [CrossRef]
- Pu, Z.; Amiinu, I.S.; Zhang, C.; Wang, M. Phytic Acid-Derivative Transition Metal Phosphides Encapsulated in N,P-Codoped Carbon: An Efficient and Durable Hydrogen Evolution Electrocatalyst in a Wide pH Range. Nanoscale 2017, 9, 3555–3560. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, B.; Zhao, D.; Wang, H.; Selomulya, C. Strategies for Developing Transition Metal Phosphides as Heterogeneous Electrocatalysts for Water Splitting. Nano Today 2017, 15, 26–55. [Google Scholar] [CrossRef]
- Li, W.; Wang, C.; Lu, X. Integrated Transition Metal and Compounds with Carbon Nanomaterials for Electrochemical Water Splitting. J. Mater. Chem. A 2020, 9, 3786–3827. [Google Scholar] [CrossRef]
- Kang, Q.; Li, M.; Shi, J.; Lu, Q.; Gao, F. A Universal Strategy for Carbon-Supported Transition Metal Phosphides as High-Performance Bifunctional Electrocatalysts towards Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 19447–19456. [Google Scholar] [CrossRef]
- Nie, G.; Zhao, X.; Luan, Y.; Jiang, J.; Kou, Z.; Wang, J. Key Issues Facing Electrospun Carbon Nanofibers in Energy Applications: Ongoing Approaches and Challenges. Nanoscale 2020, 12, 13225–13248. [Google Scholar] [CrossRef]
- Zhang, Z. Rational Design of Electrospun Nanofiber-Typed Electrocatalysts for Water Splitting: A Review. Chem. Eng. J. 2022, 428, 131133. [Google Scholar] [CrossRef]
- Ren, A.; Yu, B.; Huang, M.; Liu, Z. Encapsulation of Cobalt Prussian Blue Analogue-Derived Ultra-Small CoP Nanoparticles in Electrospun N-Doped Porous Carbon Nanofibers as an Efficient Bifunctional Electrocatalyst for Water Splitting. Int. J. Hydrogen Energy 2024, 51, 490–502. [Google Scholar] [CrossRef]
- Wang, M.; Ye, C.; Liu, H.; Xu, M.; Bao, S. Nanosized Metal Phosphides Embedded in Nitrogen-Doped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values. Angew. Chem. Int. Ed. 2018, 57, 1963–1967. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Fan, W.; Huang, Y.; Liu, T. Lotus Root-like Porous Carbon Nanofiber Anchored with CoP Nanoparticles as All-pH Hydrogen Evolution Electrocatalysts. Nano Res. 2018, 11, 1274–1284. [Google Scholar] [CrossRef]
- Quan, X.; Ouyang, C.; Pan, Y.; Zhang, C.; Wu, Z.; Hong, Z.; Zhi, M. Electrospinning Metal Phosphide/Carbon Nanofibers from Phytic Acid for Hydrogen Evolution Reaction Catalysts. Nanotechnology 2020, 31, 415602. [Google Scholar] [CrossRef]
- Lyu, C.; Cheng, J.; Yang, Y.; Lau, W.-M.; Wang, N.; Wu, Q.; Zheng, J. Modulating Metal-Support Interaction and Inducing Electron-Rich Environment of Ni2P NPs by B Atoms Incorporation for Enhanced Hydrogen Evolution Reaction Performance. J. Colloid Interface Sci. 2023, 651, 93–105. [Google Scholar] [CrossRef]
- Gao, J.; Wang, J.; Zhou, L.; Cai, X.; Zhan, D.; Hou, M.; Lai, L. Co2P@N,P-Codoped Carbon Nanofiber as a Free-Standing Air Electrode for Zn–Air Batteries: Synergy Effects of CoNx Satellite Shells. ACS Appl. Mater. Interfaces 2019, 11, 10364–10372. [Google Scholar] [CrossRef]
- Liu, X.; Xu, G.; Ding, H.; Zhang, L.; Huang, T. NiCoP Nanoparticles Embedded in Coal-Based Carbon Nanofibers as Self-Supporting Bifunctional Electrocatalyst toward Water Splitting. Int. J. Hydrogen Energy 2023, 48, 35064–35074. [Google Scholar] [CrossRef]
- Jia, S.; Cheng, Y.; Huang, Q.; Li, Q.; Zhang, Q.; Wang, Z.; Zhang, Y.; Zhang, N.; Mu, Y. One-Step Synthesis of Co2P/N-P Co-Doped Porous Carbon Composites Derived from Soybean Derivatives as Acidic and Alkaline HER Electrocatalysts. Int. J. Hydrogen Energy 2022, 47, 24796–24806. [Google Scholar] [CrossRef]
- Zhi, L.; Tu, J.; Li, J.; Li, M.; Liu, J. 3D Holey Hierarchical Nanoflowers Assembled by Cobalt Phosphide Embedded N-Doped Carbon Nanosheets as Bifunctional Electrocatalyst for Highly Efficient Overall Water Splitting. J. Colloid Interface Sci. 2022, 616, 379–388. [Google Scholar] [CrossRef]
- Ge, R.; Huo, J.; Liao, T.; Liu, Y.; Zhu, M.; Li, Y.; Zhang, J.; Li, W. Hierarchical Molybdenum Phosphide Coupled with Carbon as a Whole pH-Range Electrocatalyst for Hydrogen Evolution Reaction. Appl. Catal. B Environ. 2020, 260, 118196. [Google Scholar] [CrossRef]
- Qin, B.; Zhou, H.; Lin, J. Metal-Organic Frameworks Derived Self-Supported Ni2P Nanorod Arrays for Electrocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 2023, 48, 10032–10037. [Google Scholar] [CrossRef]
- Manikanta Kumar, M.; Raj, C.R. Heteroatom-Doped Carbon-Encapsulated FeP Nanostructure: A Multifunctional Electrocatalyst for Zinc–Air Battery and Water Electrolyzer. ACS Appl. Mater. Interfaces 2022, 14, 15176–15186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Han, Y.; Wang, W.; Huang, R.; Ma, R.; Yan, J. Engineering MIL-88A-Derived Self-Supported Moss-like Iron Phosphide Particles on Nickel Foam as Robust Bifunctional Electrocatalysts for Overall Water Splitting. ACS Appl. Energy Mater. 2022, 5, 9392–9401. [Google Scholar] [CrossRef]
- Hao, J.; Yang, W.; Zhang, Z.; Tang, J. Metal–Organic Frameworks Derived Cox Fe1−x P Nanocubes for Electrochemical Hydrogen Evolution. Nanoscale 2015, 7, 11055–11062. [Google Scholar] [CrossRef]
- Rossmeisl, J.; Chan, K.; Skúlason, E.; Björketun, M.E.; Tripkovic, V. On the pH Dependence of Electrochemical Proton Transfer Barriers. Catal. Today 2016, 262, 36–40. [Google Scholar] [CrossRef]
- Son, S.; Koo, B.; Chai, H.; Tran, H.V.H.; Pandit, S.; Jung, S.P. Comparison of Hydrogen Production and System Performance in a Microbial Electrolysis Cell Containing Cathodes Made of Non-Platinum Catalysts and Binders. J. Water Process Eng. 2021, 40, 101844. [Google Scholar] [CrossRef]
- Liu, D.; An, X.; Wang, P.; Ma, X.; Zhao, Y.; Du, X.; Hao, X. An Effective Copper Doping Strategy of Co(OH)F Cathode for Producing Hydrogen in Microbial Electrolytic Cells. Int. J. Hydrogen Energy 2023, 48, 26072–26083. [Google Scholar] [CrossRef]
- Rossi, R.; Nicolas, J.; Logan, B.E. Using Nickel-Molybdenum Cathode Catalysts for Efficient Hydrogen Gas Production in Microbial Electrolysis Cells. J. Power Sources 2023, 560, 232594. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Habas, S.E.; Schaidle, J.A.; Logan, B.E. Application of Phase-Pure Nickel Phosphide Nanoparticles as Cathode Catalysts for Hydrogen Production in Microbial Electrolysis Cells. Bioresour. Technol. 2019, 293, 122067. [Google Scholar] [CrossRef]
- Zhao, F.; Slade, R.C.T.; Varcoe, J.R. Techniques for the Study and Development of Microbial Fuel Cells: An Electrochemical Perspective. Chem. Soc. Rev. 2009, 38, 1926. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, R.; Etcheverry, L.; Roubaud, E.; Basséguy, R.; Délia, M.-L.; Bergel, A. Microbial Electrolysis Cell (MEC): Strengths, Weaknesses and Research Needs from Electrochemical Engineering Standpoint. Appl. Energy 2020, 257, 113938. [Google Scholar] [CrossRef]
Sample | S.A. (m2 g−1) | V (cm3 g−1) | Thickness (µm) | ICP-MS (wt.%) |
---|---|---|---|---|
CNF@2h(140) | 431 | 0.27 | 140 | 0 |
Co2P@1h(160) | 269 | 0.23 | 160 | 8.7 Co, 2.6 P |
Co2P@2h(120) | 358 | 0.31 | 120 | 8.6 Co, 3.0 P |
Co2P@2h(140) | 390 | 0.29 | 140 | 9.7 Co, 4.7 P |
Co2P@2h(165) | 411 | 0.33 | 165 | 12.0 Co, 4.2 P |
Co2Pox@2h(110) | 502 | 0.32 | 110 | 9.9 Co, 4.3 P |
Sample | Overpotentials (mV) | Tafel Slope (mV dec−1) | Catalyst Mass Loading (mg cm−2) | ||
---|---|---|---|---|---|
η10 | η50 | η100 | |||
Pt/C | 29 | 103 | 185 | 36 | 0.50 |
CNF@2h(140) | 335 | 468 | 547 | 185 | 0 |
Co2P@1h(160) | 207 | 329 | 406 | 180 | 0.39 |
Co2P@2h(120) | 198 | 328 | 413 | 183 | 0.24 |
Co2P@2h(140) | 199 | 323 | 395 | 178 | 0.29 |
Co2P@2h(165) | 137 | 255 | 354 | 144 | 0.49 |
Co2Pox@2h(110) | 224 | 353 | 426 | 163 | 0.37 |
Sample | Electrolyte | Overpotential, η10 (mg cm−2) | Tafel Slope (mV dec−1) | Catalyst Mass Loading (mg cm−2) | Reference |
---|---|---|---|---|---|
Pt/C | 1 M KOH | 29 | 36 | 0.50 | This work |
Co2P@2h(165) | 1 M KOH | 137 | 144 | 0.49 | This work |
CoP@CNF | 1 M KOH | 127 | 73 | 0.51 | [23] |
Ni2P@NPCNF 1 | 1 M KOH | 104 | 80 | 0.34 | [24] |
CoP/PCNF 2-0.4 | 1 M KOH | 138 | 81 | Not reported | [25] |
CoP/PCNF-0.4 | 0.5 M H2SO4 | 83 | 62 | Not reported | [25] |
Co2P/CNF | 1 M KOH | 275 | Not reported | Not reported | [26] |
Co2P/CNF | 0.5 M H2SO4 | 241 | 50 | Not reported | [26] |
Co2P/NPPC 3 | 1 M KOH | 125 | 79 | 1.00 | [30] |
CoP@NCNF 4 | 1 M KOH | 166 | 76 | Not reported | [31] |
MoP/NPG 5 | 1 M KOH | 126 | 56 | 0.28 | [32] |
Ni2P NA/NF 6 | 1 M KOH | 120 | 37 | Not reported | [33] |
FeP@NPC | 1 M KOH | 150 | 120 | 0.63 | [34] |
FeP/NF | 1 M KOH | 122 | 20 | Not reported | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Pi, G.; Luque-Rueda, J.; Bosch-Jimenez, P.; Camps, E.B.; Martínez-Crespiera, S. Free-Standing Carbon Nanofiber Films with Supported Cobalt Phosphide Nanoparticles as Cathodes for Hydrogen Evolution Reaction in a Microbial Electrolysis Cell. Nanomaterials 2024, 14, 1849. https://doi.org/10.3390/nano14221849
Pérez-Pi G, Luque-Rueda J, Bosch-Jimenez P, Camps EB, Martínez-Crespiera S. Free-Standing Carbon Nanofiber Films with Supported Cobalt Phosphide Nanoparticles as Cathodes for Hydrogen Evolution Reaction in a Microbial Electrolysis Cell. Nanomaterials. 2024; 14(22):1849. https://doi.org/10.3390/nano14221849
Chicago/Turabian StylePérez-Pi, Gerard, Jorge Luque-Rueda, Pau Bosch-Jimenez, Eduard Borràs Camps, and Sandra Martínez-Crespiera. 2024. "Free-Standing Carbon Nanofiber Films with Supported Cobalt Phosphide Nanoparticles as Cathodes for Hydrogen Evolution Reaction in a Microbial Electrolysis Cell" Nanomaterials 14, no. 22: 1849. https://doi.org/10.3390/nano14221849
APA StylePérez-Pi, G., Luque-Rueda, J., Bosch-Jimenez, P., Camps, E. B., & Martínez-Crespiera, S. (2024). Free-Standing Carbon Nanofiber Films with Supported Cobalt Phosphide Nanoparticles as Cathodes for Hydrogen Evolution Reaction in a Microbial Electrolysis Cell. Nanomaterials, 14(22), 1849. https://doi.org/10.3390/nano14221849