DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries
Abstract
1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, C.; Chen, L.; Hu, Y.; Chen, A.; Chen, L.; Jiang, H.; Li, C. Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 2021, 33, 2103558. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Tang, Y.; Tan, Z.; Lei, C.; Qin, Z.; Li, Y.; Zhao, J. Solid-state batteries encounter challenges regarding the interface involving lithium metal. Nano Energy 2024, 124, 109502. [Google Scholar] [CrossRef]
- Jin, Y.; Yu, H.; Liang, X. Understanding the roles of atomic layer deposition in improving the electrochemical performance of lithium-ion batteries. Appl. Phys. Rev. 2021, 8, 031301. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Hu, J.; Zhang, P.; Zhang, L.; Lao, L. Investigation on calendar experiment and failure mechanism of lithium-ion battery electrolyte leakage. J. Energy Storage 2022, 54, 105286. [Google Scholar] [CrossRef]
- Liu, B.; Jia, Y.; Li, J.; Yin, S.; Yuan, C.; Hu, Z.; Xu, J. Safety issues caused by internal short circuits in lithium-ion batteries. J. Mater. Chem. A 2018, 6, 21475–21484. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Prakash, P.; Fall, B.; Aguirre, J.; Sonnenberg, L.A.; Chinnam, P.R.; Chereddy, S.; Zdilla, M.J. A soft co-crystalline solid electrolyte for lithium-ion batteries. Nat. Mater. 2023, 22, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Lian, P.J.; Zhao, B.S.; Zhang, L.Q.; Xu, N.; Wu, M.T.; Gao, X.P. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A 2019, 7, 20540–20557. [Google Scholar] [CrossRef]
- An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A.K.; Yamauchi, Y. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, 2103617. [Google Scholar] [CrossRef]
- Fan, P.; Liu, H.; Marosz, V.; Samuels, N.T.; Suib, S.L.; Sun, L.; Liao, L. High performance composite polymer electrolytes for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101380. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, M.; Qian, S.; Ling, H.Y.; Wu, Z.; Liu, X.; Zhang, S. Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 2021, 3, 929–956. [Google Scholar] [CrossRef]
- Lu, F.; Li, G.; Yu, Y.; Gao, X.; Zheng, L.; Chen, Z. Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries. Chem. Eng. J. 2020, 384, 123237. [Google Scholar] [CrossRef]
- Liu, Y.; Han, L.; Liao, C.; Yu, H.; Kan, Y.; Hu, Y. Ultra-thin, non-combustible PEO polymer solid electrolyte for high safety polymer lithium metal batteries. Chem. Eng. J. 2023, 468, 143222. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Liu, S.; Xin, C.; Xue, C.; Richter, F.; Nan, C.W. High-conductivity free-standing Li6PS5Cl/poly (vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J. Mater. 2020, 6, 70–76. [Google Scholar] [CrossRef]
- Cheng, H.; Yan, C.; Orenstein, R.; Dirican, M.; Wei, S.; Subjalearndee, N.; Zhang, X. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li-metal batteries. Adv. Fiber Mater. 2022, 4, 532–546. [Google Scholar] [CrossRef]
- Zhang, M.; Li, M.; Chang, Z.; Wang, Y.; Gao, J.; Zhu, Y.; Wu, Y.; Huang, W. A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim. Acta 2017, 245, 752–759. [Google Scholar] [CrossRef]
- Pei, D.; Li, Y.; Huang, S.; Liu, M.; Hong, J.; Hou, S.; Cao, G. Polycaprolactone-poly (vinylidene fluoride) blended composite polymer electrolyte with enhanced high power performance and interfacial stability for all-solid-state Li metal batteries. Chem. Eng. J. 2023, 461, 141899. [Google Scholar] [CrossRef]
- Zhou, C.; Bag, S.; Lv, B.; Thangadurai, V. Understanding the role of solvents on the morphological structure and Li-ion conductivity of poly (vinylidene fluoride)-based polymer electrolytes. J. Electrochem. Soc. 2020, 167, 070552. [Google Scholar] [CrossRef]
- Subba Reddy, C.V.; Chen, M.; Jin, W.; Zhu, Q.Y.; Chen, W.; Mho, S.I. Characterization of (PVDF + LiFePO4) solid polymer electrolyte. J. Appl. Electrochem. 2007, 37, 637–642. [Google Scholar] [CrossRef]
- Jing, Y.; Lv, Q.; Chen, Y.; Wang, B.; Wu, B.; Li, C.; Dou, S. Synergistic coupling among Mg2B2O5, polycarbonate and N, N-dimethylformamide enhances the electrochemical performance of PVDF-HFP-based solid electrolyte. J. Energy Chem. 2024, 94, 158–168. [Google Scholar] [CrossRef]
- Anderson, E.; Zolfaghar, E.; Jonderian, A.; Khaliullin, R.Z.; McCalla, E. Comprehensive dopant screening in Li7La3Zr2O12 garnet solid electrolyte. Adv. Energy Mater. 2024, 14, 2304025. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, C. Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte. J. Phys. Chem. Solids 2019, 135, 109080. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, P.; Fang, Q.; Jing, M.; Shen, X.; Yang, L. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim. Acta 2018, 292, 718–726. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H. Composite solid electrolytes with NASICON-type LATP and PVdF–HFP for solid-state lithium batteries. Ind. Eng. Chem. Res. 2021, 60, 1494–1500. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhou, Q.; Kuai, H.; Ji, C.; Xiong, X. Engineering a well-connected ion-conduction network and interface chemistry for high-performance PVDF-based polymer-in-salt electrolytes. J. Mater. Chem. A 2024, 12, 7645–7653. [Google Scholar] [CrossRef]
- Liang, L.; Fu, Y.; Wang, D.; Wei, Y.; Kobayashi, N.; Minari, T. DNA as functional material in organic-based electronics. Appl. Sci. 2018, 8, 90. [Google Scholar] [CrossRef]
- Imani, R.; Pazoki, M.; Tiwari, A.; Boschloo, G.; Turner, A.P.F.; Kralj-Iglič, V.; Iglič, A. Band edge engineering of TiO2@DNA nanohybrids and implications for capacitive energy storage devices. Nanoscale 2015, 7, 10438–10448. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Bae, J.H. Next-generation DNA-enhanced electrochemical energy storage: Recent advances and perspectives. Curr. Appl. Phys. 2024, 67, 1–17. [Google Scholar] [CrossRef]
- Han, S.; Thapa, K.; Liu, W.; Westenberg, D.; Wang, R. Enhancement of electricity production of microbial fuel cells by using DNA nanostructures as electron mediator carriers. ACS Sustain. Chem. Eng. 2022, 10, 16189–16196. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, Y.K.; Wang, Y.; Lee, H.; Choi, J.W. A “sticky” mucin-inspired DNA-polysaccharide binder for silicon and silicon–graphite blended anodes in lithium-ion batteries. Adv. Mater. 2018, 30, 1707594. [Google Scholar] [CrossRef]
- Leones, R.; Fernandes, M.; Sentanin, F.; Cesarino, I.; Lima, J.F.D.; Zea Bermudez, V.; Silva, M.M. Ionically conducting Er3+-doped DNA-based biomembranes for electrochromic devices. Electrochim. Acta 2014, 120, 327–333. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, T.; Song, S.; Kim, P.; Bae, J. DNA-directed fabrication of NiCo2O4 nanoparticles on carbon nanotubes as electrodes for high-performance battery-like electrochemical capacitive energy storage device. Nano Energy 2019, 56, 751–758. [Google Scholar] [CrossRef]
- Li, M.; Song, S.; Li, Y.; Chen, T.; Bae, J. DNA-Guided Li2S Nanostructure Deposition for High-Sulfur-Loaded Li–S Batteries. ACS Appl. Nano Mater. 2023, 6, 11037–11048. [Google Scholar] [CrossRef]
- Shukur, M.F.; Kadir, M.F.Z. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim. Acta 2015, 158, 152–165. [Google Scholar] [CrossRef]
- Nishi, T.T.W.T.; Wang, T.T. Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)-poly (methyl methacrylate) mixtures. Macromolecules 1975, 8, 909–915. [Google Scholar] [CrossRef]
- Didwal, P.N.; Singhbabu, Y.N.; Verma, R.; Sung, B.J.; Lee, G.H.; Lee, J.S.; Chang, D.R.; Park, C.J. An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries. Energy Storage Mater. 2021, 37, 476–490. [Google Scholar] [CrossRef]
- Song, G.C.; Dam, T.; Na, H.B.; Kim, J.; Park, C.J. Quasi-solid-state composite polymer electrolyte with NASICON-type nanofillers for high performance lithium-oxygen batteries. J. Energy Storage 2023, 72, 108744. [Google Scholar] [CrossRef]
- Huang, X.W.; Liao, S.Y.; Liu, Y.D.; Rao, Q.S.; Peng, X.K.; Min, Y.G. Design, fabrication and application of PEO/CMC-Li @PI hybrid polymer electrolyte membrane in all-solid-state lithium battery. Electrochim. Acta 2021, 389, 138747. [Google Scholar] [CrossRef]
- Maitra, A.; Heuer, A. Cation transport in polymer electrolytes: A microscopic approach. Phys. Rev. Lett. 2007, 98, 227802. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J.B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385–9388. [Google Scholar] [CrossRef]
- Nguyen, A.G.; Park, C.J. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J. Membr. Sci. 2023, 675, 121552. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Bae, J. DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries. Nanomaterials 2024, 14, 1670. https://doi.org/10.3390/nano14201670
Cheng X, Bae J. DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries. Nanomaterials. 2024; 14(20):1670. https://doi.org/10.3390/nano14201670
Chicago/Turabian StyleCheng, Xiong, and Joonho Bae. 2024. "DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries" Nanomaterials 14, no. 20: 1670. https://doi.org/10.3390/nano14201670
APA StyleCheng, X., & Bae, J. (2024). DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries. Nanomaterials, 14(20), 1670. https://doi.org/10.3390/nano14201670