DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, C.; Chen, L.; Hu, Y.; Chen, A.; Chen, L.; Jiang, H.; Li, C. Light-motivated SnO2/TiO2 heterojunctions enabling the breakthrough in energy density for lithium-ion batteries. Adv. Mater. 2021, 33, 2103558. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Tang, Y.; Tan, Z.; Lei, C.; Qin, Z.; Li, Y.; Zhao, J. Solid-state batteries encounter challenges regarding the interface involving lithium metal. Nano Energy 2024, 124, 109502. [Google Scholar] [CrossRef]
- Jin, Y.; Yu, H.; Liang, X. Understanding the roles of atomic layer deposition in improving the electrochemical performance of lithium-ion batteries. Appl. Phys. Rev. 2021, 8, 031301. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Hu, J.; Zhang, P.; Zhang, L.; Lao, L. Investigation on calendar experiment and failure mechanism of lithium-ion battery electrolyte leakage. J. Energy Storage 2022, 54, 105286. [Google Scholar] [CrossRef]
- Liu, B.; Jia, Y.; Li, J.; Yin, S.; Yuan, C.; Hu, Z.; Xu, J. Safety issues caused by internal short circuits in lithium-ion batteries. J. Mater. Chem. A 2018, 6, 21475–21484. [Google Scholar] [CrossRef]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Prakash, P.; Fall, B.; Aguirre, J.; Sonnenberg, L.A.; Chinnam, P.R.; Chereddy, S.; Zdilla, M.J. A soft co-crystalline solid electrolyte for lithium-ion batteries. Nat. Mater. 2023, 22, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Lian, P.J.; Zhao, B.S.; Zhang, L.Q.; Xu, N.; Wu, M.T.; Gao, X.P. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A 2019, 7, 20540–20557. [Google Scholar] [CrossRef]
- An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A.K.; Yamauchi, Y. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, 2103617. [Google Scholar] [CrossRef]
- Fan, P.; Liu, H.; Marosz, V.; Samuels, N.T.; Suib, S.L.; Sun, L.; Liao, L. High performance composite polymer electrolytes for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101380. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, M.; Qian, S.; Ling, H.Y.; Wu, Z.; Liu, X.; Zhang, S. Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy 2021, 3, 929–956. [Google Scholar] [CrossRef]
- Lu, F.; Li, G.; Yu, Y.; Gao, X.; Zheng, L.; Chen, Z. Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries. Chem. Eng. J. 2020, 384, 123237. [Google Scholar] [CrossRef]
- Liu, Y.; Han, L.; Liao, C.; Yu, H.; Kan, Y.; Hu, Y. Ultra-thin, non-combustible PEO polymer solid electrolyte for high safety polymer lithium metal batteries. Chem. Eng. J. 2023, 468, 143222. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Liu, S.; Xin, C.; Xue, C.; Richter, F.; Nan, C.W. High-conductivity free-standing Li6PS5Cl/poly (vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. J. Mater. 2020, 6, 70–76. [Google Scholar] [CrossRef]
- Cheng, H.; Yan, C.; Orenstein, R.; Dirican, M.; Wei, S.; Subjalearndee, N.; Zhang, X. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li-metal batteries. Adv. Fiber Mater. 2022, 4, 532–546. [Google Scholar] [CrossRef]
- Zhang, M.; Li, M.; Chang, Z.; Wang, Y.; Gao, J.; Zhu, Y.; Wu, Y.; Huang, W. A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim. Acta 2017, 245, 752–759. [Google Scholar] [CrossRef]
- Pei, D.; Li, Y.; Huang, S.; Liu, M.; Hong, J.; Hou, S.; Cao, G. Polycaprolactone-poly (vinylidene fluoride) blended composite polymer electrolyte with enhanced high power performance and interfacial stability for all-solid-state Li metal batteries. Chem. Eng. J. 2023, 461, 141899. [Google Scholar] [CrossRef]
- Zhou, C.; Bag, S.; Lv, B.; Thangadurai, V. Understanding the role of solvents on the morphological structure and Li-ion conductivity of poly (vinylidene fluoride)-based polymer electrolytes. J. Electrochem. Soc. 2020, 167, 070552. [Google Scholar] [CrossRef]
- Subba Reddy, C.V.; Chen, M.; Jin, W.; Zhu, Q.Y.; Chen, W.; Mho, S.I. Characterization of (PVDF + LiFePO4) solid polymer electrolyte. J. Appl. Electrochem. 2007, 37, 637–642. [Google Scholar] [CrossRef]
- Jing, Y.; Lv, Q.; Chen, Y.; Wang, B.; Wu, B.; Li, C.; Dou, S. Synergistic coupling among Mg2B2O5, polycarbonate and N, N-dimethylformamide enhances the electrochemical performance of PVDF-HFP-based solid electrolyte. J. Energy Chem. 2024, 94, 158–168. [Google Scholar] [CrossRef]
- Anderson, E.; Zolfaghar, E.; Jonderian, A.; Khaliullin, R.Z.; McCalla, E. Comprehensive dopant screening in Li7La3Zr2O12 garnet solid electrolyte. Adv. Energy Mater. 2024, 14, 2304025. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, C. Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte. J. Phys. Chem. Solids 2019, 135, 109080. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, P.; Fang, Q.; Jing, M.; Shen, X.; Yang, L. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim. Acta 2018, 292, 718–726. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H. Composite solid electrolytes with NASICON-type LATP and PVdF–HFP for solid-state lithium batteries. Ind. Eng. Chem. Res. 2021, 60, 1494–1500. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhou, Q.; Kuai, H.; Ji, C.; Xiong, X. Engineering a well-connected ion-conduction network and interface chemistry for high-performance PVDF-based polymer-in-salt electrolytes. J. Mater. Chem. A 2024, 12, 7645–7653. [Google Scholar] [CrossRef]
- Liang, L.; Fu, Y.; Wang, D.; Wei, Y.; Kobayashi, N.; Minari, T. DNA as functional material in organic-based electronics. Appl. Sci. 2018, 8, 90. [Google Scholar] [CrossRef]
- Imani, R.; Pazoki, M.; Tiwari, A.; Boschloo, G.; Turner, A.P.F.; Kralj-Iglič, V.; Iglič, A. Band edge engineering of TiO2@DNA nanohybrids and implications for capacitive energy storage devices. Nanoscale 2015, 7, 10438–10448. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Bae, J.H. Next-generation DNA-enhanced electrochemical energy storage: Recent advances and perspectives. Curr. Appl. Phys. 2024, 67, 1–17. [Google Scholar] [CrossRef]
- Han, S.; Thapa, K.; Liu, W.; Westenberg, D.; Wang, R. Enhancement of electricity production of microbial fuel cells by using DNA nanostructures as electron mediator carriers. ACS Sustain. Chem. Eng. 2022, 10, 16189–16196. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, Y.K.; Wang, Y.; Lee, H.; Choi, J.W. A “sticky” mucin-inspired DNA-polysaccharide binder for silicon and silicon–graphite blended anodes in lithium-ion batteries. Adv. Mater. 2018, 30, 1707594. [Google Scholar] [CrossRef]
- Leones, R.; Fernandes, M.; Sentanin, F.; Cesarino, I.; Lima, J.F.D.; Zea Bermudez, V.; Silva, M.M. Ionically conducting Er3+-doped DNA-based biomembranes for electrochromic devices. Electrochim. Acta 2014, 120, 327–333. [Google Scholar] [CrossRef]
- Xue, Y.; Chen, T.; Song, S.; Kim, P.; Bae, J. DNA-directed fabrication of NiCo2O4 nanoparticles on carbon nanotubes as electrodes for high-performance battery-like electrochemical capacitive energy storage device. Nano Energy 2019, 56, 751–758. [Google Scholar] [CrossRef]
- Li, M.; Song, S.; Li, Y.; Chen, T.; Bae, J. DNA-Guided Li2S Nanostructure Deposition for High-Sulfur-Loaded Li–S Batteries. ACS Appl. Nano Mater. 2023, 6, 11037–11048. [Google Scholar] [CrossRef]
- Shukur, M.F.; Kadir, M.F.Z. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices. Electrochim. Acta 2015, 158, 152–165. [Google Scholar] [CrossRef]
- Nishi, T.T.W.T.; Wang, T.T. Melting point depression and kinetic effects of cooling on crystallization in poly (vinylidene fluoride)-poly (methyl methacrylate) mixtures. Macromolecules 1975, 8, 909–915. [Google Scholar] [CrossRef]
- Didwal, P.N.; Singhbabu, Y.N.; Verma, R.; Sung, B.J.; Lee, G.H.; Lee, J.S.; Chang, D.R.; Park, C.J. An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries. Energy Storage Mater. 2021, 37, 476–490. [Google Scholar] [CrossRef]
- Song, G.C.; Dam, T.; Na, H.B.; Kim, J.; Park, C.J. Quasi-solid-state composite polymer electrolyte with NASICON-type nanofillers for high performance lithium-oxygen batteries. J. Energy Storage 2023, 72, 108744. [Google Scholar] [CrossRef]
- Huang, X.W.; Liao, S.Y.; Liu, Y.D.; Rao, Q.S.; Peng, X.K.; Min, Y.G. Design, fabrication and application of PEO/CMC-Li @PI hybrid polymer electrolyte membrane in all-solid-state lithium battery. Electrochim. Acta 2021, 389, 138747. [Google Scholar] [CrossRef]
- Maitra, A.; Heuer, A. Cation transport in polymer electrolytes: A microscopic approach. Phys. Rev. Lett. 2007, 98, 227802. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, S.; Li, Y.; Xin, S.; Manthiram, A.; Goodenough, J.B. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385–9388. [Google Scholar] [CrossRef]
- Nguyen, A.G.; Park, C.J. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J. Membr. Sci. 2023, 675, 121552. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Bae, J. DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries. Nanomaterials 2024, 14, 1670. https://doi.org/10.3390/nano14201670
Cheng X, Bae J. DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries. Nanomaterials. 2024; 14(20):1670. https://doi.org/10.3390/nano14201670
Chicago/Turabian StyleCheng, Xiong, and Joonho Bae. 2024. "DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries" Nanomaterials 14, no. 20: 1670. https://doi.org/10.3390/nano14201670
APA StyleCheng, X., & Bae, J. (2024). DNA: Novel Crystallization Regulator for Solid Polymer Electrolytes in High-Performance Lithium-Ion Batteries. Nanomaterials, 14(20), 1670. https://doi.org/10.3390/nano14201670