Highly Efficient Organic/Silicon Hybrid Solar Cells with a MoO3 Capping Layer
Abstract
1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. Device Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, H.; Yang, M.; Ru, X.; Wang, G.; Yin, S.; Peng, F.; Hong, C.; Qu, M.; Lu, J.; Fang, L.; et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy 2023, 8, 789–799. [Google Scholar] [CrossRef]
- Holman, Z.C.; Descoeudres, A.; Barraud, L.; Fernandez, F.Z.; Seif, J.P.; De Wolf, S.; Ballif, C. Current Losses at the Front of Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2012, 2, 7–15. [Google Scholar] [CrossRef]
- Zhong, S.; Dreon, J.; Jeangros, Q.; Aydin, E.; De Wolf, S.; Fu, F.; Boccard, M.; Ballif, C. Mitigating Plasmonic Absorption Losses at Rear Electrodes in High-Efficiency Silicon Solar Cells Using Dopant-Free Contact Stacks. Adv. Funct. Mater. 2019, 30, 1907840. [Google Scholar] [CrossRef]
- Qu, X.; He, Y.; Qu, M.; Ruan, T.; Chu, F.; Zheng, Z.; Ma, Y.; Chen, Y.; Ru, X.; Xu, X.; et al. Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nat. Energy 2021, 6, 194–202. [Google Scholar] [CrossRef]
- Yang, X.; Xu, H.; Liu, W.; Bi, Q.; Xu, L.; Kang, J.; Hedhili, M.N.; Sun, B.; Zhang, X.; De Wolf, S. Atomic Layer Deposition of Vanadium Oxide as Hole-Selective Contact for Crystalline Silicon Solar Cells. Adv. Electron. Mater. 2020, 6, 2000467. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, W.; Chen, Z.; Chen, D.; Chen, Y.; Shen, H.; Liang, Z. Enhanced Hole Extraction of WOX/V2OX Dopant-Free Contact for p-type Silicon Solar Cell. Adv. Mater. Interfaces 2022, 9, 2102374. [Google Scholar] [CrossRef]
- Cao, S.; Li, J.; Zhang, J.; Lin, Y.; Lu, L.; Wang, J.; Yin, M.; Yang, L.; Chen, X.; Li, D. Stable MoOX-Based Heterocontacts for p-Type Crystalline Silicon Solar Cells Achieving 20% Efficiency. Adv. Funct. Mater. 2020, 30, 2004367. [Google Scholar] [CrossRef]
- Dréon, J.; Jeangros, Q.; Cattin, J.; Haschke, J.; Antognini, L.; Ballif, C.; Boccard, M. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 2020, 70, 104495. [Google Scholar] [CrossRef]
- Cao, L.; Procel, P.; Alcañiz, A.; Yan, J.; Tichelaar, F.; Özkol, E.; Zhao, Y.; Han, C.; Yang, G.; Yao, Z.; et al. Achieving 23.83% conversion efficiency in silicon heterojunction solar cell with ultra-thin MoOX hole collector layer via tailoring (i) a-Si:H/MoOX interface. Prog. Photovolt. 2022, 31, 1245–1254. [Google Scholar] [CrossRef]
- He, J.; Gao, P.; Yang, Z.; Yu, J.; Yu, W.; Zhang, Y.; Sheng, J.; Ye, J.; Amine, J.C.; Cui, Y. Silicon/Organic Hybrid Solar Cells with 16.2% Efficiency and Improved Stability by Formation of Conformal Heterojunction Coating and Moisture-Resistant Capping Layer. Adv. Mater. 2017, 29, 1606321. [Google Scholar] [CrossRef]
- Yoon, S.S.; Khang, D.Y. High Efficiency (>17%) Si-Organic Hybrid Solar Cells by Simultaneous Structural, Electrical, and Interfacial Engineering via Low-Temperature Processes. Adv. Energy Mater. 2017, 8, 1702655. [Google Scholar] [CrossRef]
- Shen, R.; Sun, Z.; Shi, Y.; Zhou, Y.; Guo, W.; Zhou, Y.; Yan, H.; Liu, F. Solution Processed Organic/Silicon Nanowires Hybrid Heterojunction Solar Cells Using Organosilane Incorporated Poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) as Hole Transport Layers. ACS Nano 2021, 15, 6296–6304. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Cui, W.; Aghdassi, N.; Song, T.; Duhm, S.; Lee, S.T.; Sun, B. Nanostructured Si/Organic Heterojunction Solar Cells with High Open-Circuit Voltage via Improving Junction Quality. Adv. Funct. Mater. 2016, 26, 5035–5041. [Google Scholar] [CrossRef]
- Tong, H.; Yang, Z.; Wang, X.; Liu, Z.; Chen, Z.; Ke, X.; Sui, M.; Tang, J.; Yu, T.; Ge, Z.; et al. Dual Functional Electron-Selective Contacts Based on Silicon Oxide/Magnesium: Tailoring Heterointerface Band Structures while Maintaining Surface Passivation. Adv. Energy Mater. 2018, 8, 1702921. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, X.; Hou, G.; Chen, J.; Zhu, T.; Xu, J.; Chen, K. Doping-Free Titanium Nitride Carrier Selective Contacts for Efficient Organic–Inorganic Hybrid Solar Cells. ACS Appl. Energy Mater. 2020, 3, 9208–9215. [Google Scholar] [CrossRef]
- Lu, Z.; Hou, G.; Chen, J.; Xu, J.; Chen, K. Achieving a Record Open-Circuit Voltage for Organic/Si Hybrid Solar Cells by Improving Junction Quality. Sol. RRL 2021, 5, 2100255. [Google Scholar] [CrossRef]
- Kang, S.B.; Park, W.J.; Jeong, M.H.; Kang, S.H.; Yang, C.; Choi, K.J. Ambipolar Passivated Back Surface Field Layer for Silicon Photovoltaics. Adv. Funct. Mater. 2020, 30, 2004943. [Google Scholar] [CrossRef]
- Sheng, J.; Fan, K.; Wang, D.; Han, C.; Fang, J.; Gao, P.; Ye, J. Improvement of the SiOX Passivation Layer for High-Efficiency Si/PEDOT:PSS Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 16027–16034. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Lin, F.-R.; Chen, C.-H.; Pei, Z. A 14.7% Organic/Silicon Nanoholes Hybrid Solar Cell via Interfacial Engineering by Solution-Processed Inorganic Conformal Layer. ACS Appl. Mate. Interfaces 2016, 8, 34537–34545. [Google Scholar] [CrossRef]
- Chen, T.-G.; Huang, B.-Y.; Chen, E.-C.; Yu, P.; Meng, H.-F. Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency. Appl. Phys. Lett. 2012, 101, 33301. [Google Scholar] [CrossRef]
- Mondal, B.K.; Mostaque, S.K.; Rashid, M.A.; Kuddus, A.; Shirai, H.; Hossain, J. Effect of CdS and In3Se4 BSF layers on the photovoltaic performance of PEDOT:PSS/n-Si solar cells: Simulation based on experimental data. Superlattices Microstruct. 2021, 152, 106853. [Google Scholar] [CrossRef]
- Cui, Y.; Wei, J.; Xiong, Y.; Shang, Q.-Y.T.; Liu, Q.; Huang, L.; Zhang, Y.; Yu, W. PEDOT: PSS-Nafion/n-Si Hybrid Heterojunction TOPCon Solar Cells: Experiment and Simulation. J. Phys. Chem. C 2024, 128, 2767–2775. [Google Scholar] [CrossRef]
- Yu, P.; Tsai, C.-Y.; Chang, J.-K.; Lai, C.-C.; Chen, P.-H.; Lai, Y.-C.; Tsai, P.-T.; Li, M.-C.; Pan, H.-T.; Huang, Y.-Y.; et al. 13% Efficiency Hybrid Organic/Silicon-Nanowire Heterojunction Solar Cell via Interface Engineering. ACS Nano 2013, 7, 10780–10787. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wan, Y.; Gao, P.; Tang, J.; Ye, J. Over 16.7% Efficiency Organic-Silicon Heterojunction Solar Cells with Solution-Processed Dopant-Free Contacts for Both Polarities. Adv. Funct. Mater. 2018, 28, 1802192. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, J.; Zhou, S.; Han, Y.; Gao, P.; Sun, B.; Zhao, N.; Wong, C.P. Nanostructured Silicon-Based Heterojunction Solar Cells with Double Hole-Transporting Layers. Adv. Electron. Mater. 2018, 5, 1800070. [Google Scholar] [CrossRef]
- Mu, X.; Yu, X.; Xu, D.; Shen, X.; Xia, Z.; He, H.; Zhu, H.; Xie, J.; Sun, B.; Yang, D. High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer. Nano Energy 2015, 16, 54–61. [Google Scholar] [CrossRef]
- He, J.; Gao, P.; Ling, Z.; Ding, L.; Yang, Z.; Ye, J.; Cui, Y. High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation. ACS Nano 2016, 10, 11525–11531. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, Z.; Han, W.; Liu, Q.; Lu, S.; Wen, Y.; Hou, J.; Huang, F.; Peng, S.; He, D.; et al. High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide. Appl. Surf. Sci. 2017, 407, 398–404. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Fang, X.; Zhang, F.; Song, T.; Sun, B. An 11%-Power-Conversion-Efficiency Organic–Inorganic Hybrid Solar Cell Achieved by Facile Organic Passivation. IEEE Electron Device Lett. 2013, 34, 345–347. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Lv, M.; Jiao, C.; Cheng, P.; Fu, Y.; Li, J.; Liu, Q.; He, D. Improvement of the Optoelectrical Properties of a Transparent Conductive Polymer via the Introduction of ITO Nanoparticles and Its Application in Crystalline Silicon/Organic Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 31171–31179. [Google Scholar] [CrossRef]
- Duan, X.; Han, J.; Xia, Z.; Song, T.; Li, Q.; Li, H.; Sun, B. Semiconducting single-walled carbon nanotubes as interfacial modification layers for organic-Si solar cells. Org. Electron. 2016, 28, 205–209. [Google Scholar] [CrossRef]
- Kang, S.B.; Jeong, M.H.; Choi, I.Y.; Sohn, S.-D.; Kim, S.H.; Shin, H.-J.; Park, W.I.; Shin, J.C.; Song, M.H.; Choi, K.J. Self-assembled, highly crystalline porous ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) interlayer for Si/organic hybrid solar cells. Nano Energy 2017, 41, 243–250. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, J.; Gao, N.; Song, P.; Bosman, M.; Peng, B.; Sun, B.; Qiu, C.W.; Xu, Q.H.; Bao, Q.; et al. Actively Tunable Visible Surface Plasmons in Bi2Te3 and their Energy-Harvesting Applications. Adv. Mater. 2016, 28, 3138–3144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xia, Z.; Liu, L.; Xu, W.; Yuan, Z.; Zhang, Y.; Sirringhaus, H.; Lifshitz, Y.; Lee, S.T.; Bao, Q.; et al. The Light-Induced Field-Effect Solar Cell Concept—Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency. Adv. Mater. 2017, 29, 1606370. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Z.-g.; Xia, Z.; Zhang, J.; Liu, Y.; Liang, F.; Li, Y.; Song, T.; Yu, X.; Lee, S.-t.; et al. High Performance Nanostructured Silicon–Organic Quasi p–n Junction Solar Cells via Low-Temperature Deposited Hole and Electron Selective Layer. ACS Nano 2015, 10, 704–712. [Google Scholar] [CrossRef]
- Ni, Z.; Ding, S.; Zhang, H.; Dai, R.; Chen, A.; Wang, R.; Zhang, J.; Zhou, Y.; Yang, J.; Sun, T.; et al. Phosphorus and Selenium Co-Doped WO3 Nanoparticles for Interface Modification and Photovoltaic Properties Enhancement of Monolayer Planar Silicon/PEDOT:PSS Hybrid Solar Cells. Adv. Mater. Interfaces 2022, 9, 2200812. [Google Scholar] [CrossRef]
- Yang, C.; Luo, Z.; Ma, W.; Li, S.; Lv, G.; Fu, K.; Liu, K.; Li, H.; Sun, H.; Chen, X. Study on the Fabrication of PEDOT:PSS/Si Hybrid Solar Cells Incorporated with F4TCNQ and VTMO. J. Phys. Chem. C 2023, 127, 7974–7986. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Wei, Q.; Liu, G.; Yuan, X.; Pen, H.; Zhang, G.; Wang, R.; Wang, C.; Yang, Y. Effect of Au@MoS2 Contacted PEDOT:PSS on Work Function of Planar Silicon Hybrid Solar Cells. Adv. Mater. Interfaces 2023, 10, 2300187. [Google Scholar] [CrossRef]
- Luo, Z.; Yang, C.; Chen, X.; Ma, W.; Li, S.; Fu, K. Improving open-circuit voltage and short-circuit current of high-efficiency silicon-based planar heterojunction solar cells by combining V2O5 with PEDOT:PSS. J. Materiomics 2023, 9, 438–446. [Google Scholar] [CrossRef]
Device | VOC (mV) | Jsc (mA/cm2) | FF (%) | PCE (%) | Rs (Ω·cm2) |
---|---|---|---|---|---|
w/o MoO3 | 595 | 29.8 | 75.4 | 13.4 | 4.5 |
(593 ± 6) | (29.4 ± 0.5) | (75.1 ± 0.9) | (13.1 ± 0.3) | (4.7 ± 0.6) | |
w/MoO3 | 632 | 31.4 | 80.8 | 16.0 | 2.5 |
(631 ± 2) | (30.4 ± 0.5) | (80.0 ± 0.4) | (15.3 ± 0.4) | (2.9 ± 0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Lu, Z.; Wang, X.; Luo, Y.; Ma, Y.; Lou, G.; Chi, D.; Huang, S. Highly Efficient Organic/Silicon Hybrid Solar Cells with a MoO3 Capping Layer. Nanomaterials 2024, 14, 1630. https://doi.org/10.3390/nano14201630
Chen J, Lu Z, Wang X, Luo Y, Ma Y, Lou G, Chi D, Huang S. Highly Efficient Organic/Silicon Hybrid Solar Cells with a MoO3 Capping Layer. Nanomaterials. 2024; 14(20):1630. https://doi.org/10.3390/nano14201630
Chicago/Turabian StyleChen, Jiahui, Zhangbo Lu, Xiaoting Wang, Yuner Luo, Yun Ma, Gang Lou, Dan Chi, and Shihua Huang. 2024. "Highly Efficient Organic/Silicon Hybrid Solar Cells with a MoO3 Capping Layer" Nanomaterials 14, no. 20: 1630. https://doi.org/10.3390/nano14201630
APA StyleChen, J., Lu, Z., Wang, X., Luo, Y., Ma, Y., Lou, G., Chi, D., & Huang, S. (2024). Highly Efficient Organic/Silicon Hybrid Solar Cells with a MoO3 Capping Layer. Nanomaterials, 14(20), 1630. https://doi.org/10.3390/nano14201630