Large-Scale Green Method for Synthesizing Ultralong Uniform Tellurium Nanowires for Semiconductor Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Chemicals and Materials
2.2. Synthesis of Tellurium Nanowires
2.3. Material Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kramer, A.; Van de Put, M.L.; Hinkle, C.L.; Vandenberghe, W.G. Tellurium as a successor of silicon for extremely scaled nanowires: A first-principles study. npj 2D Mater. Appl. 2020, 4, 10. [Google Scholar]
- Xie, Z.J.; Xing, C.Y.; Huang, W.C.; Fan, T.J.; Li, Z.J.; Zhao, J.L.; Xiang, Y.J.; Guo, Z.N.; Li, J.Q.; Yang, Z.G.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 11. [Google Scholar] [CrossRef]
- Auwarter, W. Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures. Surf. Sci. Rep. 2019, 74, 1–95. [Google Scholar]
- Dombi, P.; Papa, Z.; Vogelsang, J.; Yalunin, S.V.; Sivis, M.; Herink, G.; Schafer, S.; Gross, P.; Ropers, C.; Lienau, C. Strong-field nano-optics. Rev. Mod. Phys. 2020, 92, 025003. [Google Scholar] [CrossRef]
- Pordanjani, A.H.; Aghakhani, S.; Afrand, M.; Sharifpur, M.; Meyer, J.P.; Xu, H.J.; Ali, H.M.; Karimi, N.; Cheraghian, G. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects—A critical review. J. Clean. Prod. 2021, 320, 128573. [Google Scholar] [CrossRef]
- Liu, S.B.; Yan, L.; Huang, J.S.; Zhang, Q.Y.; Zhou, B. Controlling upconversion in emerging multilayer core-shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765. [Google Scholar] [CrossRef]
- Maeda, K.; Mallouk, T.E. Two-Dimensional Metal Oxide Nanosheets as Building Blocks for Artificial Photosynthetic Assemblies. Bull. Chem. Soc. Jpn. 2019, 92, 38–54. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, Y.; Wei, X.; Jiang, M.; Xu, H. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Front. Phys. 2023, 18, 33601. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.; Liu, Y.; Du, Y.; Goddard, W.A., III; Kim, M.J.; Xu, X.; et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Xu, M.; Liu, L.; Yang, D.; Zhou, P. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 2022, 21, 1225–1239. [Google Scholar] [CrossRef]
- Liu, J.W.; Jiang, J.G.; Meng, Y.; Aihemaiti, A.; Xu, Y.W.; Xiang, H.L.; Gao, Y.C.; Chen, X.J. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. J. Hazard. Mater. 2020, 388, 122026. [Google Scholar] [PubMed]
- Yadav, A.; Kumar, H.; Sharma, R.; Kumari, R. Synthesis, processing, and applications of 2D (nano) materials: A sustainable approach. Surf. Interfaces 2023, 39, 102925. [Google Scholar]
- Zhu, H.; Fan, L.; Wang, K.; Liu, H.; Zhang, J.; Yan, S. Progress in the Synthesis and Application of Tellurium Nanomaterials. Nanomaterials 2023, 13, 2057. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, X.; Kang, X.; Li, W.; Wang, W.; Lai, Z.; Wang, W.; Quan, Q.; Bu, X.; Yip, S. Van der Waals nanomesh electronics on arbitrary surfaces. Nat. Commun. 2023, 14, 2431. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Ruan, H.; Cheng, Z.; Yao, Y.; Zhuge, F.; Zhai, T. Programmable Nucleation and Growth of Ultrathin Tellurium Nanowires via a Pulsed Physical Vapor Deposition Design. Adv. Funct. Mater. 2023, 33, 2211527. [Google Scholar]
- Manjunatha, C.; Ashoka, S.; Krishna, R.H. Microwave-assisted green synthesis of inorganic nanomaterials. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–39. [Google Scholar]
- Pinisetty, D.; Davis, D.; Podlaha-Murphy, E.; Murphy, M.; Karki, A.; Young, D.; Devireddy, R. Characterization of electrodeposited bismuth–tellurium nanowires and nanotubes. Acta Mater. 2011, 59, 2455–2461. [Google Scholar]
- Sahu, A.; Russ, B.; Liu, M.; Yang, F.; Zaia, E.W.; Gordon, M.P.; Forster, J.D.; Zhang, Y.-Q.; Scott, M.C.; Persson, K.A.; et al. In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks. Nat. Commun. 2020, 11, 2069. [Google Scholar]
- Wang, K.; Yang, Y.; Liang, H.-W.; Liu, J.-W.; Yu, S.-H. First sub-kilogram-scale synthesis of high quality ultrathin tellurium nanowires. Materials Horizons 2014, 1, 338–343. [Google Scholar]
- Furuta, N.; Ohasi, Y.; Itinose, H.; Igarashi, Y. Kinetics of vapor-grown tellurium whiskers. Jpn. J. Appl. Phys. 1975, 14, 929. [Google Scholar]
- Li, Z.; Zheng, S.; Zhang, Y.; Teng, R.; Huang, T.; Chen, C.; Lu, G. Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method. J. Mater. Chem. A 2013, 1, 15046–15052. [Google Scholar]
- Wang, Q.; Li, G.-D.; Liu, Y.-L.; Xu, S.; Wang, K.-J.; Chen, J.-S. Fabrication and growth mechanism of selenium and tellurium nanobelts through a vacuum vapor deposition route. J. Phys. Chem. C 2007, 111, 12926–12932. [Google Scholar] [CrossRef]
- Silva, R.R.; Mejia, H.A.; Ribeiro, S.J.; Shrestha, L.K.; Ariga, K.; Oliveira, O.N., Jr.; Camargo, V.R.; Maia, L.J.; Araújo, C.B. Facile synthesis of tellurium nanowires and study of their third-order nonlinear optical properties. J. Braz. Chem. Soc. 2017, 28, 58–67. [Google Scholar]
- He, P.; Hu, X.; Hu, Z.; Chen, J.; Xie, Z.; Huang, J.; Tao, L.; Lu, H.; Hao, M. Preparation of tellurium nanowires and its application in ultrafast photonics. J. Lumin. 2022, 252, 119335. [Google Scholar] [CrossRef]
- Song, J.-M.; Lin, Y.-Z.; Zhan, Y.-J.; Tian, Y.-C.; Liu, G.; Yu, S.-H. Superlong high-quality tellurium nanotubes: Synthesis, characterization, and optical property. Cryst. Growth Des. 2008, 8, 1902–1908. [Google Scholar]
- Liu, J.-W.; Zhu, J.-H.; Zhang, C.-L.; Liang, H.-W.; Yu, S.-H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 2010, 132, 8945–8952. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kung, S.; Taggart, D.; Xiang, C.; Yang, F.; Brown, M.; Kruse, T.; Hemminger, J.; Penner, R. Synthesis of PbTe nanowire arrays using lithographically patterned nanowire electrodeposition. Nano Lett. 2008, 8, 2447–2451. [Google Scholar] [PubMed]
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389. [Google Scholar]
- Chen, Y.; Zhao, Y.; Liang, Z. Solution processed organic thermoelectrics: Towards flexible thermoelectric modules. Energy Environ. Sci. 2015, 8, 401–422. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, Z.; Park, M.; Tang, Y.; Choi, H.; Song, S.H.; Lee, H.-J. Large-Scale Green Method for Synthesizing Ultralong Uniform Tellurium Nanowires for Semiconductor Devices. Nanomaterials 2024, 14, 1625. https://doi.org/10.3390/nano14201625
Lyu Z, Park M, Tang Y, Choi H, Song SH, Lee H-J. Large-Scale Green Method for Synthesizing Ultralong Uniform Tellurium Nanowires for Semiconductor Devices. Nanomaterials. 2024; 14(20):1625. https://doi.org/10.3390/nano14201625
Chicago/Turabian StyleLyu, Zhiyi, Mose Park, Yanjin Tang, Hoon Choi, Seung Hyun Song, and Hoo-Jeong Lee. 2024. "Large-Scale Green Method for Synthesizing Ultralong Uniform Tellurium Nanowires for Semiconductor Devices" Nanomaterials 14, no. 20: 1625. https://doi.org/10.3390/nano14201625
APA StyleLyu, Z., Park, M., Tang, Y., Choi, H., Song, S. H., & Lee, H.-J. (2024). Large-Scale Green Method for Synthesizing Ultralong Uniform Tellurium Nanowires for Semiconductor Devices. Nanomaterials, 14(20), 1625. https://doi.org/10.3390/nano14201625