Development of TiO2–CaCO3 Based Composites as an Affordable Building Material for the Photocatalytic Abatement of Hazardous NOx from the Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CaCO3–n-TiO2 (CT) Catalysts
2.3. Preparation of Photocatalyst Included Mortar
3. Characterization
3.1. Photodegradation of MB
3.2. Photodegradation of NOx
3.3. Possible Photocatalytic Mechanism of MB
3.4. The Possible Photocatalytic Mechanism of NOx
4. Results and Discussion
4.1. Photodegradation of MB
4.2. Photodegradation of NOx
4.3. NOx Photodegradation of Catalyst CT-4 Mixed Cement Mortar
4.4. UV–Visible Analysis
4.5. Micro-Structure Analysis
4.6. Elemental and Electronic States
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zambotti, A.; Bruni, A.; Biesuz, M.; Sorarù, G.D.; Rivoira, L.; Castiglioni, M.; Onida, B.; Bruzzoniti, M.C. Glyphosate Adsorption Performances of Polymer-Derived SiC/C Aerogels. J. Environ. Chem. Eng. 2023, 11, 109771. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, B. Purification Technologies for NOx Removal from Flue Gas: A Review. Separations 2022, 9, 307. [Google Scholar] [CrossRef]
- Chu, B.; Ma, Q.; Liu, J.; Ma, J.; Zhang, P.; Chen, T.; Feng, Q.; Wang, C.; Yang, N.; Ma, H.; et al. Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NOx and SO2 Control. Environ. Sci. Technol. Lett. 2020, 7, 695–700. [Google Scholar] [CrossRef]
- Poon, C.S.; Cheung, E. NO Removal Efficiency of Photocatalytic Paving Blocks Prepared with Recycled Materials. Constr. Build. Mater. 2007, 21, 1746–1753. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Synergy between van Der Waals Heterojunction and Vacancy in ZnIn2S4/g-C3N4 2D/2D Photocatalysts for Enhanced Photocatalytic Hydrogen Evolution. Appl. Catal. B 2020, 277, 119254. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Li, Z.; Wu, S.; Chen, D.; Yang, L.X.; Cao, D.; Tu, W.G.; Yu, Z.T.; Zou, Z.G. Role of Two-Dimensional Nanointerfaces in Enhancing the Photocatalytic Performance of 2D-2D MoS2/CdS Photocatalysts for H2 Production. Chem. Eng. J. 2018, 350, 335–343. [Google Scholar] [CrossRef]
- Ballari, M.M.; Yu, Q.L.; Brouwers, H.J.H. Experimental Study of the NO and NO2 Degradation by Photocatalytically Active Concrete. Catal. Today 2011, 161, 175–180. [Google Scholar] [CrossRef]
- Valenti, G.L.; Marroccoli, M.; Pace, M.L.; Telesca, A. Discussion of the Paper Understanding Expansion in Calcium Sulfoaluminate-Belite Cements by I.A. Chen et al., Cem. Concr. Res. 42 (2012) 51-60. Cem. Concr. Res. 2012, 42, 1555–1559. [Google Scholar] [CrossRef]
- Cai, J.; Pan, J.; Tan, J.; Li, X. Bond Behaviours of Deformed Steel Rebars in Engineered Cementitious Composites (ECC) and Concrete. Constr. Build. Mater. 2020, 252, 119082. [Google Scholar] [CrossRef]
- Lee, B.Y.; Jayapalan, A.R.; Bergin, M.H.; Kurtis, K.E. Photocatalytic Cement Exposed to Nitrogen Oxides: Effect of Oxidation and Binding. Cem. Concr. Res. 2014, 60, 30–36. [Google Scholar] [CrossRef]
- da Rocha Segundo, I.G.; Margalho, É.M.; Lima, O.d.S.; Pinheiro, C.G.d.S.; de Freitas, E.F.; Carneiro, J.A.S.A.O. Smart Asphalt Mixtures: A Bibliometric Analysis of the Research Trends. Coatings 2023, 13, 1396. [Google Scholar] [CrossRef]
- Banerjee, S.; Dionysiou, D.D.; Pillai, S.C. Self-Cleaning Applications of TiO2 by Photo-Induced Hydrophilicity and Photocatalysis. Appl. Catal. B 2015, 176–177, 396–428. [Google Scholar] [CrossRef]
- Smits, M.; kit Chan, C.; Tytgat, T.; Craeye, B.; Costarramone, N.; Lacombe, S.; Lenaerts, S. Photocatalytic Degradation of Soot Deposition: Self-Cleaning Effect on Titanium Dioxide Coated Cementitious Materials. Chem. Eng. J. 2013, 222, 411–418. [Google Scholar] [CrossRef]
- Adachi, T.; Latthe, S.S.; Gosavi, S.W.; Roy, N.; Suzuki, N.; Ikari, H.; Kato, K.; Katsumata, K.-i.; Nakata, K.; Furudate, M.; et al. Photocatalytic, Superhydrophilic, Self-Cleaning TiO2 Coating on Cheap, Light-Weight, Flexible Polycarbonate Substrates. Appl. Surf. Sci. 2018, 458, 917–923. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, L.; Fan, Z.; Sun, S.; Feng, Z.; Li, W.; Ding, H. Construction of R-TiO2/n-TiO2 Heterophase Photocatalysts for Efficient Degradation of Organic Pollutants. J. Alloys Compd. 2023, 968, 172127. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.; Lu, J.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Nitrogen-Doped Hydrogenated TiO2 Modified with CdS Nanorods with Enhanced Optical Absorption, Charge Separation and Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2020, 384, 123275. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Tian, J.; Yang, H.; Cui, H. Highly Efficient Full Solar Spectrum (UV-Vis-NIR) Photocatalytic Performance of Ag2S Quantum Dot/TiO2 Nanobelt Heterostructures. J. Ind. Eng. Chem. 2017, 45, 189–196. [Google Scholar] [CrossRef]
- Enesca, A.; Isac, L.; Duta, A. Charge Carriers Injection in Tandem Semiconductors for Dyes Mineralization. Appl. Catal. B 2015, 162, 352–363. [Google Scholar] [CrossRef]
- Nomura, Y.; Fukahori, S.; Fujiwara, T. Thermodynamics of Removing Crotamiton and Its Transformation Byproducts from Water by a Rotating Advanced Oxidation Contactor with Zeolite/TiO2 Composite Sheets. Chem. Eng. J. 2020, 380, 122479. [Google Scholar] [CrossRef]
- Folli, A.; Pade, C.; Hansen, T.B.; De Marco, T.; MacPhee, D.E. TiO2 Photocatalysis in Cementitious Systems: Insights into Self-Cleaning and Depollution Chemistry. Cem. Concr. Res. 2012, 42, 539–548. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.; Sun, Z.; Zheng, S. Synthesis of Natural Porous Minerals Supported TiO2 Nanoparticles and Their Photocatalytic Performance towards Rhodamine B Degradation. Powder Technol. 2014, 262, 1–8. [Google Scholar] [CrossRef]
- Feng, S.; Li, F. Photocatalytic Dyes Degradation on Suspended and Cement Paste Immobilized TiO2/g-C3N4under Simulated Solar Light. J. Environ. Chem. Eng. 2021, 9, 105488. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F.P. The Role of Calcium Carbonate in Cement Hydration. Cem. Concr. Res. 2007, 37, 551–558. [Google Scholar] [CrossRef]
- Minakshi, M.; Visbal, H.; Mitchell, D.R.G.; Fichtner, M. Bio-Waste Chicken Eggshells to Store Energy. Dalton Trans. 2018, 47, 16828–16834. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Hu, Z.; Yan, Y.; Zheng, S. Effect of Preparation Conditions on the Characteristics and Photocatalytic Activity of TiO2 /Purified Diatomite Composite Photocatalysts. Appl. Surf. Sci. 2014, 314, 251–259. [Google Scholar] [CrossRef]
- Baral, A.; Das, D.P.; Minakshi, M.; Ghosh, M.K.; Padhi, D.K. Probing Environmental Remediation of RhB Organic Dye Using α-MnO2 under Visible- Light Irradiation: Structural, Photocatalytic and Mineralization Studies. Chem. Sel. 2016, 1, 4277–4285. [Google Scholar] [CrossRef]
- Kun, R.; Mogyorósi, K.; Dékány, I. Synthesis and Structural and Photocatalytic Properties of TiO2/Montmorillonite Nanocomposites. Appl. Clay Sci. 2006, 32, 99–110. [Google Scholar] [CrossRef]
- Sun, S.; Ding, H.; Hou, X. Preparation of CaCO3-TiO2 Composite Particles and Their Pigment Properties. Materials 2018, 11, 1131. [Google Scholar] [CrossRef]
- Sun, S.; Ding, H.; Hou, X.; Chen, D.; Yu, S.; Zhou, H.; Chen, Y. Effects of Organic Modifiers on the Properties of TiO2 -Coated CaCO3 Composite Pigments Prepared by the Hydrophobic Aggregation of Particles. Appl. Surf. Sci. 2018, 456, 923–931. [Google Scholar] [CrossRef]
- Tao, H.; He, Y.; Zhao, X. Preparation and Characterization of Calcium Carbonate-Titanium Dioxide Core-Shell (CaCO3@TiO2) Nanoparticles and Application in the Papermaking Industry. Powder Technol. 2015, 283, 308–314. [Google Scholar] [CrossRef]
- Lara, R.C.; de Castro Xavier, G.; Canela, M.C.; Carvalho, J.A.; Alexandre, J.; de Azevedo, A.R.G. Characterization and Photocatalytic Performance of Cement Mortars with Incorporation of TiO2 and Mineral Admixtures. Environ. Sci. Pollut. Res. 2023, 30, 95537–95549. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.; Li, Y.; Lin, Z.; Kafizas, A. Studying the Effects of Processing Parameters in the Aerosol-Assisted Chemical Vapour Deposition of TiO2 Coatings on Glass for Applications in Photocatalytic NOx Remediation. Appl. Catal. A Gen. 2022, 648, 118924. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Nguyen, B.S.; Huang, C.W.; Le, T.T.; Nguyen, C.C.; Nhi Le, T.T.; Heo, D.; Ly, Q.V.; Trinh, Q.T.; Shokouhimehr, M.; et al. Photocatalytic NOx Abatement: Recent Advances and Emerging Trends in the Development of Photocatalysts. J. Clean. Prod. 2020, 270, 121912. [Google Scholar] [CrossRef]
- Geetha, G.V.; Sivakumar, R.; Sanjeeviraja, C.; Ganesh, V. Photocatalytic Degradation of Methylene Blue Dye Using ZnWO4 Catalyst Prepared by a Simple Co-Precipitation Technique. J. Solgel Sci. Technol. 2021, 97, 572–580. [Google Scholar] [CrossRef]
- Wang, W.; Lin, F.; Yan, B.; Cheng, Z.; Chen, G.; Kuang, M.; Yang, C.; Hou, L. The Role of Seashell Wastes in TiO2/Seashell Composites: Photocatalytic Degradation of Methylene Blue Dye under Sunlight. Environ. Res. 2020, 188, 109831. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, C.; Zou, F.; Hu, H.; Li, J.; Luo, H. CaCO3/TiO2 Hybrid Microcapsules with Self-Cleaning and Self-Repairing Functions for Decorative Coatings. Inorg. Chem. Commun. 2024, 159, 111665. [Google Scholar] [CrossRef]
- Hou, C.; Hu, B.; Zhu, J. Photocatalytic Degradation of Methylene Blue over TiO2 Pretreated with Varying Concentrations of NaOH. Catalysts 2018, 8, 575. [Google Scholar] [CrossRef]
- Urbonavicius, M.; Varnagiris, S.; Sakalauskaite, S.; Demikyte, E.; Tuckute, S.; Lelis, M. Application of Floating TiO2 Photocatalyst for Methylene Blue Decomposition and Salmonella Typhimurium Inactivation. Catalysts 2021, 11, 794. [Google Scholar] [CrossRef]
- Spigariol, N.; Liccardo, L.; Lushaj, E.; Rodríguez-Castellón, E.; Barroso Martin, I.; Polo, F.; Vomiero, A.; Cattaruzza, E.; Moretti, E. Titania Nanorods Array Homojunction with Sub-Stoichiometric TiO2 for Enhanced Methylene Blue Photodegradation. Catal. Today 2023, 419, 114134. [Google Scholar] [CrossRef]
- Inamdar, A.K.; Hulsure, N.R.; Kadam, A.S.; Rajenimbalkar, R.S.; Karpoormath, R.; Shelke, S.B.; Inamdar, S.N. Flame Synthesized Tetragonal TiO2 Nanoparticles for Methylene Blue and Congo Red Dye Removal Applications. Results Chem. 2023, 5, 100854. [Google Scholar] [CrossRef]
- El-Toni, A.M.; Habila, M.A.; Sheikh, M.; El-Mahrouky, M.; Al-Awadi, A.S.; Labis, J.P.; ALOthman, Z.A. Fabrication of Fe3O4 Core-TiO2/MesoSiO2 and Fe3O4 Core-MesoSiO2/TiO2 Double Shell Nanoparticles for Methylene Blue Adsorption: Kinetic, Isotherms and Thermodynamic Characterization. Nanomaterials 2023, 13, 2548. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.; Pan, L.; Xu, Z.; Ding, H.; Li, W. Preparation and Properties of CaCO3-Supported Nano-TiO2 Composite with Improved Photocatalytic Performance. Materials 2019, 12, 3369. [Google Scholar] [CrossRef] [PubMed]
- AL-Maqate, F.G.; Qasem, A.; Alomayri, T.; Madani, A.; Timoumi, A.; Hussain, D.; Ikram, M.; Al-Malki, K.M.; Bruno, T.A. Profundity Study on Structural and Optical Properties of Heavy Oil Fly Ash (HOFA) Doped Calcium Carbonate (CaCO3) Nanostructures and Thin Films for Optoelectronic Applications. Opt. Mater. 2022, 131, 112719. [Google Scholar] [CrossRef]
- Sarkar, A.; Mahapatra, S. Synthesis of All Crystalline Phases of Anhydrous Calcium Carbonate. Cryst. Growth Des. 2010, 10, 2129–2135. [Google Scholar] [CrossRef]
- Zouzelka, R.; Rathousky, J. Photocatalytic Abatement of NOx Pollutants in the Air Using Commercial Functional Coating with Porous Morphology. Appl. Catal. B 2017, 217, 466–476. [Google Scholar] [CrossRef]
- Sriubas, M.; Bočkute, K.; Virbukas, D.; Laukaitis, G. Investigation of the Properties of Ca-Doped TiO2 Thin Films Formed by e-Beam Evaporation. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 98, pp. 133–138. [Google Scholar]
- Chu, D.H.; Vinoba, M.; Bhagiyalakshmi, M.; Hyun Baek, I.; Nam, S.C.; Yoon, Y.; Kim, S.H.; Jeong, S.K. CO2 Mineralization into Different Polymorphs of CaCO3 Using an Aqueous-CO2 System. RSC Adv. 2013, 3, 21722–21729. [Google Scholar] [CrossRef]
- Bharti, B.; Kumar, S.; Lee, H.N.; Kumar, R. Formation of Oxygen Vacancies and Ti3+ State in TiO2 Thin Film and Enhanced Optical Properties by Air Plasma Treatment. Sci. Rep. 2016, 6, 32355. [Google Scholar] [CrossRef] [PubMed]
Irradiation Time (h) | Photocatalysts | ||||||
---|---|---|---|---|---|---|---|
C | T | CT-1 | CT-2 | CT-3 | CT-4 | CT-5 | |
The Concentration of the Photodegraded Methylene Blue (mg/L) | |||||||
1 h | 9.98 | 8.41 | 7.47 | 6.91 | 7.08 | 6.02 | 7.11 |
2 h | 9.40 | 6.5 | 5.77 | 3.94 | 5.11 | 3.83 | 5.75 |
3 h | 9.06 | 5.61 | 4.45 | 2.95 | 3.39 | 2.55 | 3.73 |
Compositions | Cement (g) | Sand (g) | Photocatalysis (wt.%) | Water (%) |
---|---|---|---|---|
Mortar | 1 | 2.5 | 0 | 60 |
Mix catalyst | 1 | 2.5 | 5 | 60 |
Mix catalyst | 1 | 2.5 | 10 | 60 |
Mix catalyst | 1 | 2.5 | 15 | 60 |
Samples | Composition | 2θ (Degree) | The Crystallite Size (nm) | D-Spacing(Å) | Lattice Constants (a, b, c) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A (%) | C (%) | A | C | A | C | A | C | A | C | |||
(101) | (104) | a = b | c | a = b | c | |||||||
T | 100 | - | 25.385 | - | 50.31 | - | 3.510 | - | 3.752 | 9.405 | - | - |
C | - | 100 | - | 29.379 | - | 52.65 | - | 3.037 | - | - | 4.999 | 17.050 |
CT-1 | 25.1 | 74.9 | 25.316 | 29.400 | 55.97 | 51.70 | 3.515 | 3.035 | 3.783 | 9.508 | 4.997 | 17.034 |
CT-2 | 34.0 | 66.0 | 25.313 | 29.399 | 56.34 | 51.70 | 3.515 | 3.035 | 3.783 | 9.508 | 4.997 | 17.038 |
CT-3 | 43.9 | 56.1 | 25.301 | 29.388 | 58.27 | 51.39 | 3.517 | 3.036 | 3.785 | 9.514 | 4.999 | 17.042 |
CT-4 | 53.5 | 46.5 | 25.317 | 29.401 | 57.10 | 51.70 | 3.515 | 3.035 | 3.783 | 9.509 | 4.996 | 17.036 |
CT-5 | 66.2 | 33.8 | 25.325 | 29.420 | 57.87 | 58.38 | 3.513 | 3.033 | 3.781 | 9.510 | 4.993 | 17.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuppusamy, M.; Kim, S.-W.; Lee, K.-P.; Jo, Y.J.; Kim, W.-J. Development of TiO2–CaCO3 Based Composites as an Affordable Building Material for the Photocatalytic Abatement of Hazardous NOx from the Environment. Nanomaterials 2024, 14, 136. https://doi.org/10.3390/nano14020136
Kuppusamy M, Kim S-W, Lee K-P, Jo YJ, Kim W-J. Development of TiO2–CaCO3 Based Composites as an Affordable Building Material for the Photocatalytic Abatement of Hazardous NOx from the Environment. Nanomaterials. 2024; 14(2):136. https://doi.org/10.3390/nano14020136
Chicago/Turabian StyleKuppusamy, Madhan, Sun-Woo Kim, Kwang-Pill Lee, Young Jin Jo, and Wha-Jung Kim. 2024. "Development of TiO2–CaCO3 Based Composites as an Affordable Building Material for the Photocatalytic Abatement of Hazardous NOx from the Environment" Nanomaterials 14, no. 2: 136. https://doi.org/10.3390/nano14020136
APA StyleKuppusamy, M., Kim, S.-W., Lee, K.-P., Jo, Y. J., & Kim, W.-J. (2024). Development of TiO2–CaCO3 Based Composites as an Affordable Building Material for the Photocatalytic Abatement of Hazardous NOx from the Environment. Nanomaterials, 14(2), 136. https://doi.org/10.3390/nano14020136