Single-Layer Metasurface-Based Reflectarray Antenna with H-Shaped Slotted Patch for X-Band Communication
Abstract
1. Introduction
2. Design and Analysis of Unit Cell
3. Reflectarray Design and Simulation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Encinar, J.A. Reflectarray Antennas; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Guo, Y.; Barton, S. Phase efficiency of the reflective array antenna. IEE Proc.-Microw. Antennas Propag. 1995, 142, 115–120. [Google Scholar] [CrossRef]
- Li, L.; Chen, Q.; Yuan, Q.; Sawaya, K.; Maruyama, T.; Furuno, T.; Uebayashi, S. Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications. IEEE Trans. Antennas Propag. 2010, 59, 89–99. [Google Scholar] [CrossRef]
- Gupta, A.; Kumari, M.; Sharma, M.; Alsharif, M.H.; Uthansakul, P.; Uthansakul, M.; Bansal, S. 8-port MIMO antenna at 27 GHz for n261 band and exploring for body centric communication. PLoS ONE 2024, 19, e0305524. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Karmakar, A.; Prakash, K.; Chauhan, A.; Bansal, S.; Hooda, M.; Kumar, S.; Gupta, N.; Singh, A.K. Design and characterization of RF MEMS capacitive shunt switch for X, Ku, K and Ka band applications. Microelectron. Eng. 2020, 227, 111310. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, V.; Bansal, S.; Alsharif, M.H.; Jahid, A.; Cho, H.S. A Miniaturized Tri-Band Implantable Antenna for ISM/WMTS/Lower UWB/Wi-Fi Frequencies. Sensors 2023, 23, 6989. [Google Scholar] [CrossRef]
- Pozar, D. Bandwidth of reflectarrays. Electron. Lett. 2003, 39, 1490–1491. [Google Scholar] [CrossRef]
- Li, Y.; Li, L. Broadband microstrip beam deflector based on dual-resonance conformal loops array. IEEE Trans. Antennas Propag. 2014, 62, 3028–3034. [Google Scholar] [CrossRef]
- Min, M.; Guo, L.; Feng, W. A Wideband Reflectarray Using Slotted Patch with Concave Arms. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; IEEE: New York, NY, USA, 2020; pp. 1–3. [Google Scholar]
- Chen, Q.Y.; Qu, S.W.; Li, J.F.; Chen, Q.; Xia, M.Y. An X-band reflectarray with novel elements and enhanced bandwidth. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 317–320. [Google Scholar] [CrossRef]
- Encinar, J.A. Design of two-layer printed reflectarrays using patches of variable size. IEEE Trans. Antennas Propag. 2001, 49, 1403–1410. [Google Scholar] [CrossRef]
- Encinar, J.A.; Zornoza, J.A. Broadband design of three-layer printed reflectarrays. IEEE Trans. Antennas Propag. 2003, 51, 1662–1664. [Google Scholar] [CrossRef]
- Carrasco, E.; Encinar, J.A.; Barba, M. Bandwidth improvement in large reflectarrays by using true-time delay. IEEE Trans. Antennas Propag. 2008, 56, 2496–2503. [Google Scholar] [CrossRef]
- Ahmad, A.; Ali, J.; Choi, D.Y. Investigating Polarization-Sensitive Transmission and Reflection. Appl. Sci. 2023, 13, 10389. [Google Scholar] [CrossRef]
- Khan, D.; Ahmad, A.; Choi, D.Y. Dual-band 5G MIMO antenna with enhanced coupling reduction using metamaterials. Sci. Rep. 2024, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Ahmad, A.; Choi, D.y. A Metalens design for on-and off-center focusing with amorphous silicon hydrogenated (a-Si: H)-based 1D array in visible spectrum. Electronics 2023, 12, 2953. [Google Scholar] [CrossRef]
- Qin, P.Y.; Guo, Y.J.; Weily, A.R. Broadband reflectarray antenna using subwavelength elements based on double square meander-line rings. IEEE Trans. Antennas Propag. 2015, 64, 378–383. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Liu, Y.; Zhang, W.; Zhang, Q.; Gao, Y.; Tong, Z. A novel wideband reflectarray using sub-wavelength Archimedes spiral unit cell. Electromagnetics 2022, 42, 411–424. [Google Scholar] [CrossRef]
- Liao, T.; Zhang, Z.Q.; Jiao, Y.C.; Yan, Y.D.; Chen, G.T.; Weng, Z.B. Broadband circular polarized reflectarray based on multi-resonance unit. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22618. [Google Scholar] [CrossRef]
- Vosoogh, A.; Keyghobad, K.; Khaleghi, A.; Mansouri, S. A high-efficiency Ku-band reflectarray antenna using single-layer multiresonance elements. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 891–894. [Google Scholar] [CrossRef]
- Yu, H.; Guo, L. Broadband single-layer reflectarray antenna employing circular ring elements dented with sectorial slits. IEEE Access 2019, 7, 165814–165819. [Google Scholar] [CrossRef]
- Han, C.; Zhang, Y.; Yang, Q. A broadband reflectarray antenna using triple gapped rings with attached phase-delay lines. IEEE Trans. Antennas Propag. 2017, 65, 2713–2717. [Google Scholar] [CrossRef]
- He, Y.; Gao, Z.; Jia, D.; Zhang, W.; Du, B.; Chen, Z.N. Dielectric metamaterial-based impedance-matched elements for broadband reflectarray. IEEE Trans. Antennas Propag. 2017, 65, 7019–7028. [Google Scholar] [CrossRef]
- Su, W.; Luo, W.; Nie, Z.; Liu, W.W.; Cao, Z.H.; Wang, Z. A wideband folded reflectarray antenna based on single-layered polarization rotating metasurface. IEEE Access 2020, 8, 158579–158584. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, S.; Yang, F.; Elsherbeni, A.Z. A novel phase synthesis approach for wideband reflectarray design. IEEE Trans. Antennas Propag. 2015, 63, 4189–4193. [Google Scholar] [CrossRef]
- Pozar, D. Wideband reflectarrays using artificial impedance surfaces. Electron. Lett. 2007, 43, 1. [Google Scholar] [CrossRef]
- Ahmad, A.; Choi, D.Y. Design, optimization, and comparative analysis of wide-band polarization conversion along with dual coding sequences for RCS reduction. Sci. Rep. 2024, 14, 8262. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Choi, D.y. Compact eight-element MIMO antenna with reduced mutual coupling and beam-scanning performance. Sensors 2022, 22, 8933. [Google Scholar] [CrossRef]
- Kundu, D.; Bhattacharya, D.; Ruchi, R. A single-layer broadband reflectarray in k-band using cross-loop slotted patch elements. IEEE Access 2022, 10, 13490–13495. [Google Scholar] [CrossRef]
- Güneş, F.; Demirel, S.; Nesil, S. A novel design approach to X-band Minkowski reflectarray antennas using the full-wave EM simulation-based complete neural model with a hybrid GA-NM algorithm. Radioengineering 2014, 23, 144–153. [Google Scholar]
- Lee, S.R.; Lim, E.H.; Lo, F.L. Broadband single-layer E-patch reflectarray. Radioengineering 2017, 26, 97–106. [Google Scholar] [CrossRef]
- Qotolo, S.F.; Hassani, H.R.; Naser-Moghadasi, M. A novel broadband reflectarray antenna with lattice stubs on square element for K u-band application. Microw. Opt. Technol. Lett. 2015, 57, 2699–2702. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y. Analysis of Blockage Effects in a Center-Fed Reflectarray. Microw. Opt. Technol. Lett. 2013, 55, 1921–1926. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Song, W.; Lin, X.; Xie, B.; Wang, J.; Zhao, R. W-band single-layer broadband reflectarray antenna. IEEE Access 2023, 11, 66309–66317. [Google Scholar] [CrossRef]
- Shabbir, T.; Saleem, R.; Rehman, S.U.; Shafique, M.F. Single layer reflectarray antenna with pie-shaped elements for X-band applications. Appl. Comput. Electromagn. Soc. J. (ACES) 2018, 33, 1230–1235. [Google Scholar]
- Han, C.; Zhang, Y.; Yang, Q. A novel single-layer unit structure for broadband reflectarray antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 681–684. [Google Scholar] [CrossRef]
- Bodur, H.; Cimen, S. Reflectarray antenna design with double cutted ring element for X-band applications. Microw. Opt. Technol. Lett. 2020, 62, 3248–3254. [Google Scholar] [CrossRef]
- Su, T.; Yi, X.; Wu, B. X/Ku dual-band single-layer reflectarray antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 338–342. [Google Scholar] [CrossRef]
- Shabbir, T.; Islam, M.T.; Misran, N.; Al-Bawri, S.S.; Singh, S. Broadband single-layer reflectarray antenna loaded with meander-delay-lines for X-band applications. Alex. Eng. J. 2021, 60, 1105–1112. [Google Scholar] [CrossRef]
- Etesami, F.; Abiri, H.; Khorshidi, S. Design of a broadband single-layer reflectarray antenna using double hexagonal rings and a hexapole. J. Electromagn. Waves Appl. 2020, 34, 2419–2432. [Google Scholar] [CrossRef]
- Nayeri, P.; Yang, F.; Elsherbeni, A.Z. Beam-scanning reflectarray antennas: A technical overview and state of the art. IEEE Antennas Propag. Mag. 2015, 57, 32–47. [Google Scholar] [CrossRef]
- Shabbir, T.; Saleem, R.; Rehman, S.U.; Shafique, M.F. A compact single layer reflectarray antenna based on circular delay-lines for X-band applications. Radioengineering 2018, 27, 440–447. [Google Scholar] [CrossRef]
Parameter | P | L | |||
---|---|---|---|---|---|
Values | 9 mm | 8–4.4 mm | 6.4–2.4 mm | 0.5 mm | 2 mm |
References | This Work | [27] | [28] | [29] |
---|---|---|---|---|
Center frequency (GHz) | 10 | 10 | 10 | 10 |
Gain (dBi) | 25.5 dBi | 24 dBi | 25 dBi | 22.8 dBi |
Aperture efficiency (%) | 63.7% | 48% | 52.8% | 32% |
1 dB Bandwidth (%) | 20% | 18% | 19.5% | - |
Side lobe levels (SLLs) | −21 | −22 | −22 | −14 |
X-pol (dB) | −33 | −35 | −35 | −25 |
Air layer | No | Yes | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, J.; Ahmad, A.; Choi, D.-y. Single-Layer Metasurface-Based Reflectarray Antenna with H-Shaped Slotted Patch for X-Band Communication. Nanomaterials 2024, 14, 1495. https://doi.org/10.3390/nano14181495
Ali J, Ahmad A, Choi D-y. Single-Layer Metasurface-Based Reflectarray Antenna with H-Shaped Slotted Patch for X-Band Communication. Nanomaterials. 2024; 14(18):1495. https://doi.org/10.3390/nano14181495
Chicago/Turabian StyleAli, Jawad, Ashfaq Ahmad, and Dong-you Choi. 2024. "Single-Layer Metasurface-Based Reflectarray Antenna with H-Shaped Slotted Patch for X-Band Communication" Nanomaterials 14, no. 18: 1495. https://doi.org/10.3390/nano14181495
APA StyleAli, J., Ahmad, A., & Choi, D.-y. (2024). Single-Layer Metasurface-Based Reflectarray Antenna with H-Shaped Slotted Patch for X-Band Communication. Nanomaterials, 14(18), 1495. https://doi.org/10.3390/nano14181495