Fabrication of Non-Wetting Mg(OH)2 Composites with Photoresponsive Capabilities and Their Environmental Restoration Performance
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Superhydrophobic Composite
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Yang, X.Y.; Jia, X.H.; Yang, J.; Miao, X.; Shao, D.; Song, H.J.; Li, Y. Full biomass-derived multifunctional aerogel for solar-driven interfacial evaporation. Chem. Eng. J 2023, 471, 144684. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Li, C.L.; Tao, H.Y.; Ge, B.; Zhang, Y.L.; Zhao, L.M.; Liu, J.C.; Ren, G.N.; Zhang, Z.Z. A sponge-based iron-tannic-acid hydrogel interface evaporator designed for clean water production. Sci. China Technol. Sci. 2024, 67, 1579–1591. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Luo, Y.J.; Li, M.Y.; Ge, B.; Zhao, L.M.; Zhang, T.H.; Ren, G.N.; Zhang, Z.Z. A self-floating graphite felt evaporator: Interface wetting control and its application in environmental remediation and desalination. Chem. Eng. J. 2024, 488, 151038. [Google Scholar] [CrossRef]
- Zhou, X.; Li, D.X.; Wang, L.L.; Wang, Q.; Wang, Z.; Jing, Q.; Marisol, R.; Li, L. Recent advances in the modification of melamine sponge for oil-water separation. J. Mater. Sci. Technol. 2025, 207, 209–224. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, B.B.; Deng, J.W.; Li, H.R. One-step facile fabrication of Mg(OH)2/PVA/ZnO membrane with superior stability and oil-water separation. Sep. Purif. Technol. 2024, 351, 128105. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukherjee, S.; Karthik, V.; Bera, P.; Dhakshinamorthy, A.; Biswas, S. A superhydrophobic MOF facilitating efficient solvent-free catalytic chemical fixation of CO2 and oxidation of hydrocarbons and MOF@cotton@starch composite-based selective sensing of a herbicide. J. Mater. Chem. C 2024, 12, 4460–4472. [Google Scholar] [CrossRef]
- Fu, Y.F.; Fan, Z.Z.; Liu, Q.W.; Tong, Q.L.; Qiao, S.Y.; Cai, L.; Zhang, X.S. A robust superhydrophobic and superoleophilic SA-HKUST-1 membrane for efficient oil/water mixture separation. New J. Chem. 2024, 48, 5372–5380. [Google Scholar] [CrossRef]
- Li, X.L.; Wang, M.Q.; Tao, H.Y.; Ge, B.; Liu, S.; Liu, J.C.; Ren, G.N.; Zhang, Z.Z. Constructing of efficient interface solar evaporator: In-situ colloid foaming strategy for solar desalination and visible light response sewage purification. J. Colloids Interf. Sci. 2023, 649, 107–117. [Google Scholar] [CrossRef]
- Ghosh, S.; Rana, A.; Patel, A.; Manna, D.; Biswas, S. Superhydrophobic nanosized metal-organic framework composites for the targeted removal of hydrophobic pharmaceuticals with outstanding bacterial anti-adhesion properties. Environ. Sci. Nano 2024, 11, 1233–1244. [Google Scholar] [CrossRef]
- Zhao, H.L.; Ma, X.Z.; Xu, X.B.; Cui, M.H.; Stott, N.E.; Zhu, J.; Chen, J. Lightweight, superhydrophobic, lignin-based polyurethane foam composites for underwater pressure sensing. J. Mater. Chem. C 2024, 12, 3203–3209. [Google Scholar] [CrossRef]
- Chen, C.; Gao, C.C.; Lin, K.G.; Zhang, J.; Zhang, Z.W.; Jing, Y.F.; Xiao, Y.S.; Shan, G.H.; Xie, C. Recycling of expired cow milk for constructing multifunctional biomass nonfluorinated chromatic paint with superhydrophobicity. Chem. Eng. J. 2024, 492, 152326. [Google Scholar] [CrossRef]
- Kong, L.J.; Sun, P.Q.; Liu, J.C.; Lin, Y.X.; Xiao, C.; Bao, C.; Zheng, K.; Xue, M.; Zhang, X.; Liu, X.L.; et al. Superhydrophobic and mechanical properties enhanced the electrospinning film with a multiscale micro-nano structure for high-efficiency radiation cooling. J. Mater. Chem. A 2024, 12, 7886–7895. [Google Scholar] [CrossRef]
- Guan, Y.H.; Bi, B.Q.; Qiao, D.; Cao, S.J.; Zhang, W.J.; Wang, Z.N.; Zeng, H.B.; Li, Y.M. Bioinspired superhydrophobic polylactic acid aerogel with tree branch structure for the removal of viscous oil spills assisted by solar energy. J. Mater. Chem. A 2024, 12, 9850–9862. [Google Scholar] [CrossRef]
- Zhu, W.H.; Xing, Y.J.; Wang, H.R.; Yu, M.Y.; Cen, H.Y.; Liu, L.L.; Li, Y.Q.; Zhu, W. Fluorine-free preparation of superhydrophobic polyester fabric with directional moisture transport for efficient oil-water separation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 696, 134369. [Google Scholar] [CrossRef]
- Huang, Z.H.; Wang, Z.Z.; Wang, S.Q.; Shan, X.W.; Yin, S.M.; Tao, B. Superhydrophilic–superhydrophobic integrated system based on copper mesh for continuous and efficient oil-water separation. RSC Adv. 2024, 14, 6064–6071. [Google Scholar] [CrossRef]
- He, X.T.; Lu, J.H.; Liu, J.X.; Wu, Z.X.; Li, B.Y.; Chen, Z.; Tao, W.Q.; Li, Z. Superhydrophobic Co-MOF-based sponge for efficient oil-water separation utilizing photothermal effect. J. Hazard. Mater. 2024, 469, 134090. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.L.; Sun, M.Y.Z.; Zhang, H.R.; Cao, X.Q.; Li, Y.Q.; Zhou, Y.T. All in one double pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chin. J. Struct. Chem. 2024, in press. [Google Scholar] [CrossRef]
- Zhao, D.X.; Wu, P.Y.; Zhu, H.Y.; Jiang, R.; Chen, J.W.; Qiu, C.H.; Jiang, S.T.; Lu, G.P. Construction of S-scheme heterojunctions of a Ti-doped Ce-MOF and BiOCl for efficient photocatalytic selective oxidation of amines. Inorg. Chem. Front. 2024, 11, 1583–1595. [Google Scholar] [CrossRef]
- Xu, S.F.; Zhang, J.Q.; Sun, X.F.; Yang, H.; Ma, J. Construction of ternary AuPt/Bi2WO6/ZnIn2S4 heterostructures for photocatalytic degradation of tetrabromobisphenol A. Colloids Surf. A 2024, 689, 133757. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.L.; Hu, P.; Liu, T.; Weng, B.; Ye, K.H.; Luo, Y.M.; Ji, H.B. Vacancy pair induced surface chemistry reconstruction of Cs2AgBiBr6/Bi2WO6 heterojunction to enhance photocatalytic CO2 reduction. Appl. Catal. B Environ. Energy 2024, 351, 123956. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Le, P.D.; Cao, T.M.; Pham, V.V. Establishing Z-scheme Bi2WO6/g-C3N4 interfaces toward efficient photocatalytic performance of NOx under visible light. J Alloy. Compd. 2024, 989, 174244. [Google Scholar] [CrossRef]
- Pham, H.A.L.; Nguyen, V.H.; Lee, T.; Nguyen, V.C.; Nguyen, T.D. Construction of BiOCl/bismuth-based halide perovskite heterojunctions derived from the metal-organic framework CAU-17 for effective photocatalytic degradation. Chemosphere 2024, 357, 142114. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Okab, A.A.; Graimed, B.H.; Ammar, S.H.; Taofeeq, H.; Al-Yasiri, M. Building a robust S-scheme BiOCl/CuBi2O4 system for photocatalytic oxidation of sulfamethoxazole under solar light irradiation. Sol. Energy 2024, 275, 112640. [Google Scholar] [CrossRef]
- Wang, W.T.; Liu, Z.Y.; Nie, H.W.; Kong, B. The direct Z-scheme character and roles of S vacancy in BiOCl/Bi2S3-(001) heterostructures for superior photocatalytic activity: A hybrid density functional investigation. Phys. Chem. Chem. Phys. 2024, 26, 10723–10736. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Guo, Z.R.; Zhang, X.; Zhang, M.L.; Li, J.Y.; Zhang, D.X.; Xu, X.Y. Effective solar light-driven isothiazolinone degradation by morphology-and oxygen vacancy-modified Gd-doped BiOCl. New J. Chem. 2024, 48, 6168–6179. [Google Scholar] [CrossRef]
- Xu, M.C.; Dong, F.; Zhang, Z.P.; Shao, M.; Wan, Y.S. A Novel Z-type 0D/2D BiOCl/NiAl-LDH heterojunction for photodegradation of multiple antibiotics in industrial wastewater: Degradation pathways and toxicity analysis. J Alloy. Compd. 2024, 991, 174543. [Google Scholar] [CrossRef]
- Waehayee, A.; Phonsuksawang, P.; Falun, P.; Ngamwongwan, L.; Choklap, T.; Prachanat, J.; Chankhanittha, T.; Butburee, T.; Suthirakun, S.; Siritanon, T. Enhancing Z-scheme {001}/{110} junction in BiOCl with {110} surface oxygen vacancies for photocatalytic degradation of rhodamine B and tetracycline. J. Alloy. Compd. 2024, 997, 174915. [Google Scholar] [CrossRef]
- Chen, R.X.; Gan, W.; Guo, J.; Lu, Y.Q.; Ding, S.; Liu, R.; Zhang, M.; Sun, Z.Q. Internal electric field and oxygen vacancies synergistically boost S-scheme VO/BiOCl-TiO2 heterojunction film for photocatalytic degradation of norfloxacin. Chem. Eng. J. 2024, 489, 151260. [Google Scholar] [CrossRef]
- Farid, M.A.; Ashraf, A.R.; Sarfaraz, R.; Hassan, S.U.; Naeem, N.; Naeem, H. Simultaneous photocatalytic degradation of methylene blue and methyl orange using a green synthesized Zn0.98Mn0.02O/BiOCl nanocomposite. New J. Chem. 2024, 48, 887–897. [Google Scholar] [CrossRef]
- Fu, S.; Chu, Z.L.; Huang, Z.Q.; Dong, X.M.; Bie, J.H.; Yang, Z.; Zhu, H.J.; Pu, W.Y.; Wu, W.Z.; Liu, B. Construction of Z-scheme AgCl/BiOCl heterojunction with oxygen vacancies for improved pollutant degradation and bacterial inactivation. RSC Adv. 2024, 14, 3888–3899. [Google Scholar] [CrossRef]
- Li, Y.Y.; Liu, Y.H.; Liu, X.G.; Li, X. Synthesis of double Z-scheme CdS/Bi2O2CO3/BiOCl heterojunction photocatalysts for degradation of rhodamine B under visible light. React. Chem. Eng. 2024, 9, 186–198. [Google Scholar] [CrossRef]
- Nakayama, D.; Wu, C.M.; Motora, K.G.; Koinkar, P.; Furube, A. Novel solar-light-driven Z-scheme BiOCl@WS2 nanocomposite photocatalysts for the photocatalytic removal of organic pollutants. New J. Chem. 2023, 47, 22078–22089. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.Z.; Ge, B.; Men, X.H.; Xue, Q.J. One-pot, template-free synthesis of a robust superhydrophobic polymer monolith with an adjustable hierarchical porous structure. Green Chem. 2016, 18, 5266–5272. [Google Scholar] [CrossRef]
- Yu, H.Y.; Wu, M.; Duan, G.G.; Gong, X. One-step fabrication of eco-friendly superhydrophobic fabrics for high-efficiency oil/water separation and oil spill cleanup. Nanoscale 2022, 14, 1296–1309. [Google Scholar] [CrossRef]
- Zhang, R.; Zeng, K.L. A novel flower-like dual Z-scheme BiSI/Bi2WO6/g-C3N4 photocatalyst has excellent photocatalytic activity for the degradation of organic pollutants under visible light. Diam. Relat. Mater. 2021, 115, 108343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhao, J.; Peng, Y.; Li, Y.; Guo, W.; Liao, C. Fabrication of Non-Wetting Mg(OH)2 Composites with Photoresponsive Capabilities and Their Environmental Restoration Performance. Nanomaterials 2024, 14, 1240. https://doi.org/10.3390/nano14151240
Zhang D, Zhao J, Peng Y, Li Y, Guo W, Liao C. Fabrication of Non-Wetting Mg(OH)2 Composites with Photoresponsive Capabilities and Their Environmental Restoration Performance. Nanomaterials. 2024; 14(15):1240. https://doi.org/10.3390/nano14151240
Chicago/Turabian StyleZhang, Dongmei, Jiaqi Zhao, Yangyang Peng, Yuchao Li, Wenbin Guo, and Chengzhu Liao. 2024. "Fabrication of Non-Wetting Mg(OH)2 Composites with Photoresponsive Capabilities and Their Environmental Restoration Performance" Nanomaterials 14, no. 15: 1240. https://doi.org/10.3390/nano14151240
APA StyleZhang, D., Zhao, J., Peng, Y., Li, Y., Guo, W., & Liao, C. (2024). Fabrication of Non-Wetting Mg(OH)2 Composites with Photoresponsive Capabilities and Their Environmental Restoration Performance. Nanomaterials, 14(15), 1240. https://doi.org/10.3390/nano14151240