Asymmetric Polarization in a Rough Multilayer: Towards the Discrimination of Enantiomer Pairs
Abstract
1. Introduction
2. Rationale for Experiments
3. Results
3.1. Multilayer Plasmonic Response and Transmitted Signal
3.2. Discrimination of Enantiomers
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peluso, P.; Chankvetadze, B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem. Rev. 2022, 122, 13235–13400. [Google Scholar] [CrossRef] [PubMed]
- Biellmann, J.-F. Enantiomeric steroids: Synthesis, physical; biological properties. Rev. C 2003, 103, 2019–2033. [Google Scholar] [CrossRef]
- Waldeck, B. Biological significance of the enantiomeric purity of drugs. Chirality 1993, 5, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Cohen, A.E. Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light. Science 2011, 332, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kwan, C.-S.; Zhang, L.; Li, X.; Han, Y.; Leung, K.C.-F.; Yang, Y.; Huang, Z. Chiral Nanoparticle-Induced Enantioselective Amplification of Molecular Optical Activity. Adv. Funct. Mater. 2018, 29, 1807307. [Google Scholar] [CrossRef]
- Metzger, T.S.; Batchu, H.; Kumar, A.; Fedotov, D.A.; Goren, N.; Bhowmick, D.K.; Shioukhi, I.; Yochelis, S.; Schapiro, I.; Naaman, R.; et al. Optical Activity and Spin Polarization: The Surface Effect. J. Am. Chem. Soc. 2023, 145, 3972–3977. [Google Scholar] [CrossRef]
- Quan, M.; Pang, X.-Y.; Jiang, W. Circular Dichroism Based Chirality Sensing with Supramolecular Host–Guest Chemistry. Angew. Chem. 2022, 134, e202201258. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Cheeseman, J.R.; Frisch, M.J.; Bortolini, O.; Besse, P. Determination of absolute configuration using ab initio calculation of optical rotation. Chirality 2003, 15, S57–S64. [Google Scholar] [CrossRef]
- Wu, J.-L.; Wang, Y.; Su, S.-L.; Xia, Y.; Jiang, Y.; Song, J. Discrimination of enantiomers through quantum interference and quantum Zeno effect. Opt. Express 2020, 28, 33475–33489. [Google Scholar] [CrossRef] [PubMed]
- Lämmerhofer, M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J. Chromatogr. A 2010, 1217, 814–856. [Google Scholar] [CrossRef]
- Pettinger, B.; Tadjeddine, A.; Kolb, D.M. Enhancement in Raman intensity by use of surface plasmons. Chem. Phys. Lett. 1979, 66, 544–548. [Google Scholar] [CrossRef]
- Hu, D.-B.; Chen, C.; Qi, Z.-M. Resonant Mirror Enhanced Raman Spectroscopy. J. Phys. Chem. C 2014, 118, 13099–13106. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Nonaka, K. Light depolarization in off-specular reflection on submicro rough metal surfaces with imperfectly random roughness. Rev. Sci. Instrum. 2015, 86, 23107. [Google Scholar] [CrossRef] [PubMed]
- Goudonnet, J.P.; Inagaki, T.; Arakawa, E.T.; Ferrell, T.L. Angular and polarization dependence of surface-enhanced Raman scattering in attenuated-total-reflection geometry. Phys. Rev. B 1987, 36, 917–921. [Google Scholar] [CrossRef]
- Primeau, N.; Coutaz, J.L.; Abello, L. Effect of the metal film thickness on surface-plasmon-enhanced Raman scattering in an attenuated total reflection experiment. J. Appl. Phys. 1993, 73, 5158–5162. [Google Scholar] [CrossRef]
- Hizhnyakov, V.; Loot, A.; Azizabadi, S. Dynamical Casimir effect for surface plasmon polaritons. Phys. Lett. A 2015, 379, 501–505. [Google Scholar] [CrossRef]
- Kalachyova, Y.; Guselnikova, O.; Elashnikov, R.; Panov, I.; Žádný, J.; Církva, V.; Storch, J.; Sykora, J.; Zaruba, K.; Švorčík, V.; et al. Helicene-SPP-Based Chiral Plasmonic Hybrid Structure: Toward Direct Enantiomers SERS Discrimination. ACS Appl. Mater. Interfaces 2019, 11, 1555–1562. [Google Scholar] [CrossRef]
- Simone, G.; van de Donk, O. Oole Short chain thiols induce better plasmon resonance sensitivity in Au(111). J. Mater. Chem. C 2019, 7, 13803–13810. [Google Scholar] [CrossRef]
- Meyer, S.A.; Le Ru, E.C.; Etchegoin, P.G. Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal. Chem. 2011, 83, 2337–2344. [Google Scholar] [CrossRef]
- Simone, G.; de Ruijter, P. Plasmon resonance excitation enhances Raman emission and amplifies the molecular vibration on Au (111) film. Appl. Surf. Sci. 2020, 530, 147207. [Google Scholar] [CrossRef]
- Bahk, Y.-M.; Ramakrishnan, G.; Choi, J.; Song, H.; Choi, G.; Kim, Y.H.; Ahn, K.J.; Kim, D.-S.; Planken, P.C.M. Plasmon enhanced terahertz emission from single layer graphene. ACS Nano 2014, 8, 9089–9096. [Google Scholar] [CrossRef] [PubMed]
- Simone, G. Proof of enantioselectivity in a multilayer with a strong exciton polariton coupling and through asymmetric polarization. arXiv 2023, arXiv:2309.08979. [Google Scholar]
- Byun, K.M.; Kim, S.J.; Kim, D. Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings. Appl. Opt. 2007, 46, 5703–5708. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-L.; Yu, D.-M.; Liu, G.-D.; Lin, Q.; Zhai, X.; Wang, L.-L. Perfect Plasmon-Induced Absorption and Its Application for Multi-Switching in Simple Plasmonic System. Plasmonics 2018, 13, 1015–1020. [Google Scholar] [CrossRef]
- Kalas, B.; Ferencz, K.; Saftics, A.; Czigany, Z.; Fried, M.; Petrik, P. Bloch surface waves biosensing in the ultraviolet wavelength range—Bragg structure design for investigating protein adsorption by in situ Kretschmann-Raether ellipsometry. Appl. Surf. Sci. 2020, 536, 147869. [Google Scholar] [CrossRef]
- Lu, M.; Hong, L.; Liang, Y.; Charron, B.; Zhu, H.; Peng, W.; Masson, J.-F. Enhancement of Gold Nanoparticle Coupling with a 2D Plasmonic Crystal at High Incidence Angles. Anal. Chem. 2018, 90, 6683–6692. [Google Scholar] [CrossRef] [PubMed]
- Simone, G. Direct measurement of topological invariants in a double emitter system including plasmonic antennae. Optica Open Preprint 2024. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Yu, Y.; Wang, S.; Yang, T.; Zhang, Z.; Tong, L.; Zhang, J. Quantum interference directed chiral raman scattering in two-dimensional enantiomers. Nat. Commun. 2022, 13, 1254. [Google Scholar] [CrossRef] [PubMed]
- Simone, G.; Abdalla, S. Ag/Au alloy entangled in a protein matrix: A plasmonic substrate coupling surface plasmons and molecular chirality. Appl. Surf. Sci. 2020, 526, 146711. [Google Scholar] [CrossRef]
- Hayat, A.; Mueller, J.P.B.; Capasso, F. Lateral chirality-sorting optical forces. Proc. Natl. Acad. Sci. USA 2015, 112, 13190–13194. [Google Scholar] [CrossRef]
- Sun, X.; Wang, N.; He, Y.; Kong, H.; Yang, H.; Liu, X. Molecule-specific vibration-based chiral differentiation of Raman spectra using cysteine modified gold nanoparticles: The cases of tyrosine and phenylalanine. J. Mater. Chem. B 2021, 9, 7167–7171. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Sun, X.; Yang, L.; Liu, X.; Yang, H.; Jin, R.-H. Chirality Detection by Raman Spectroscopy: The Case of Enantioselective Interactions between Amino Acids and Polymer-Modified Chiral Silica. Anal. Chem. 2020, 92, 14292–14296. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simone, G. Asymmetric Polarization in a Rough Multilayer: Towards the Discrimination of Enantiomer Pairs. Nanomaterials 2024, 14, 1109. https://doi.org/10.3390/nano14131109
Simone G. Asymmetric Polarization in a Rough Multilayer: Towards the Discrimination of Enantiomer Pairs. Nanomaterials. 2024; 14(13):1109. https://doi.org/10.3390/nano14131109
Chicago/Turabian StyleSimone, Giuseppina. 2024. "Asymmetric Polarization in a Rough Multilayer: Towards the Discrimination of Enantiomer Pairs" Nanomaterials 14, no. 13: 1109. https://doi.org/10.3390/nano14131109
APA StyleSimone, G. (2024). Asymmetric Polarization in a Rough Multilayer: Towards the Discrimination of Enantiomer Pairs. Nanomaterials, 14(13), 1109. https://doi.org/10.3390/nano14131109