Abridging the CMOS Technology II
Funding
Conflicts of Interest
List of Contributions
- Wong, H.; Zhang, J.; Liu, J. Contacts at the Nanoscale and for Nanomaterials. Nanomaterials 2024, 14, 386. https://doi.org/10.3390/nano14040386.
- Liu, M.; Sun, Z.; Lu, H.; Shen, C.; Zhang, L.; Wang, R.; Huang, R. A Coupling Mechanism between Flicker Noise and Hot Carrier Degradations in FinFETs. Nanomaterials 2023, 13, 1507. https://doi.org/10.3390/nano13091507.
- Elmourabit, F.; Dlimi, S.; El Moutaouakil, A.; Id Ouissaaden, F.; Khoukh, A.; Limouny, L.; Elkhatat, H.; El Kaaouachi, A. Nature of the Metal Insulator Transition in High-Mobility 2D Si-MOSFETs. Nanomaterials 2023, 13, 2047. https://doi.org/10.3390/nano13142047.
- Wong, H.; Kakushima, K. Poole–Frenkel (PF)-MOS: A Proposal for the Ultimate Scale of a MOS Transistor. Nanomaterials 2023, 13, 411. https://doi.org/10.3390/nano13030411.
- Spassov, D.; Paskaleva, A. Challenges to Optimize Charge Trapping Non-Volatile Flash Memory Cells: A Case Study of HfO2/Al2O3 Nanolaminated Stacks. Nanomaterials 2023, 13, 2456. https://doi.org/10.3390/nano13172456.
- Wang, D.; Jiang, Z.; Li, L.; Zhu, D.; Wang, C.; Han, S.; Fang, M.; Liu, X.; Liu, W.; Cao, P.; et al. High-Performance Thin-Film Transistors with ZnO:H/ZnO Double Active Layers Fabricated at Room Temperature. Nanomaterials 2023, 13, 1422. https://doi.org/10.3390/nano13081422.
- Li, C.; Pan, Z.; Hao, W.; Li, X.; Miao, R.; Wang, A. Graphene-Based ESD Protection for Future ICs. Nanomaterials 2023, 13, 1426. https://doi.org/10.3390/nano13081426.
- Abidi, E.; Khan, A.; Delgado-Notario, J.A.; Clericó, V.; Calvo-Gallego, J.; Taniguchi, T.; Watanabe, K.; Otsuji, T.; Velázquez, J.E.; Meziani, Y.M. Terahertz Detection by Asymmetric Dual Grating Gate Bilayer Graphene FETs with Integrated Bowtie Antenna. Nanomaterials 2024, 14, 383. https://doi.org/10.3390/nano14040383.
- Xia, J.; Zhang, F.; Zhang, L.; Cao, Z.; Dong, S.; Zhang, S.; Luo, J.; Zhou, G. Magnetically Compatible Brain Electrode Arrays Based on Single-Walled Carbon Nanotubes for Long-Term Implantation. Nanomaterials 2024, 14, 240. https://doi.org/10.3390/nano14030240.
- Wong, C.H.; Yeung, Y.M.; Zhao, X.; Law, W.C.; Tang, C.Y.; Mak, C.L.; Leung, C.W.; Shi, L.; Lortz, R. A Simulation of the Effect of External and Internal Parameters on the Synthesis of a Carbyne with More than 6000 Atoms for Emerging Continuously Tunable Energy Barriers in CNT-Based Transistors. Nanomaterials 2023, 13, 1048. https://doi.org/10.3390/nano13061048.
References
- Moore, S.K. Meet the Forksheet: IMEC’s In-Between Transistor: The Architecture Shrinks Circuits in a Valuable Step toward the Ultimate CMOS Device. IEEE Spectr. 25 May 2023. Available online: https://spectrum.ieee.org/Forksheet-transistor (accessed on 23 April 2024).
- Ryckaert, J.; Schuddinck, P.; Weckx, P.; Bouche, G.; Vincent, B.; Smith, J.; Sherazi, Y.; Mallik, A.; Mertens, H.; Demuynck, S.; et al. The Complementary FET (CFET) for CMOS scaling beyond N3. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 12–17 June 2018; pp. 141–142. [Google Scholar]
- Ingerly, D.B.; Enamul, K.; Gomes, W.; Jones, D.; Kolluru, K.C.; Kandas, A.; Kim, G.-S.; Ma, H.; Pantuso, D.; Petersburg, C.; et al. Foveros: 3D Integration and the use of Face-to-Face Chip Stacking for Logic Devices. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 19.6.1–19.6.4. [Google Scholar]
- Hafez, W.; Agnihotri, P.; Asoro, M.; Aykol, M.; Bains, B.; Bambery, R.; Natarajan, S. Intel PowerVia Technology: Backside Power Delivery for High Density and High-Performance Computing. In Proceedings of the 2023 IEEE Symposium on VLSI Technology and Circuits, Kyoto, Japan, 11–16 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Moore, S.K. Chiplets are the Future of Processors: Three advances boost performance, cut costs, and save power. IEEE Spectr. 2020, 55, 11–12. [Google Scholar] [CrossRef]
- Mounce, G.; Lyke, J.; Horan, S.; Powell, W.; Doyle, R.; Some, R. Chiplet based Approach for Heterogeneous Processing and Packaging Architectures. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 April 2016; pp. 1–12. [Google Scholar]
- Wong, H. Abridging CMOS Technology. Nanomaterials 2022, 12, 4245. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, H. Abridging the CMOS Technology II. Nanomaterials 2024, 14, 897. https://doi.org/10.3390/nano14110897
Wong H. Abridging the CMOS Technology II. Nanomaterials. 2024; 14(11):897. https://doi.org/10.3390/nano14110897
Chicago/Turabian StyleWong, Hei. 2024. "Abridging the CMOS Technology II" Nanomaterials 14, no. 11: 897. https://doi.org/10.3390/nano14110897
APA StyleWong, H. (2024). Abridging the CMOS Technology II. Nanomaterials, 14(11), 897. https://doi.org/10.3390/nano14110897