Multi-Band Emission of Pr3+-Doped Ca3Al2O6 and the Effects of Charge Compensator Ions on Luminescence Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phase Structure and Morphology
3.2. Luminescence Properties of Pr3+ in Ca3Al2O6
3.3. The Influences of Charge Compensator Ions
3.4. Potential Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhong, J.; Zhuo, Y.; Hariyani, S.; Zhao, W.; Zhuang, W.; Brgoch, J. Thermally robust and color-tunable blue-green-emitting BaMgSi4O10:Eu2+,Mn2+ phosphor for warm-white LEDs. Inorg. Chem. 2020, 59, 13427–13434. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, Y.; Chen, Y.; Zhou, Y.; Milićević, B.; Zhou, L.; Yan, J.; Shi, J.; Liu, R.; Wu, M. Single-crystal red phosphors and their core-shell structure for improved water-resistance for Laser diodes applications. Angew. Chem. Int. Ed. 2021, 133, 3986–3991. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, Y.; Liu, S.; Li, H.; Chen, J. Narrow-band green-emitting Sr2MgAl22O36:Mn2+ phosphors with superior thermal stability and wide color gamut for backlighting display applications. Adv. Optical Mater. 2018, 7, 1801419. [Google Scholar] [CrossRef]
- Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S.K.; Viana, B.; Bos, A.J.J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nature Materials 2014, 13, 418–426. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, F. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Optical Mater. 2019, 7, 1801417. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Zheng, B.; Zheng, Z.; Song, Y.; Zheng, K.; Sheng, Y.; Shi, Z.; Zou, H. Luminescence and energy transfer of color-tunable Y2Mg2Al2Si2O12:Eu2+,Ce3+ phosphors. Inorg. Chem. 2021, 60, 5908–5916. [Google Scholar] [CrossRef]
- Su, F.; Lou, B.; Ou, Y.; Yang, Y.; Zhou, W.; Duan, C.; Liang, H. VUV-UV-vis luminescence, energy transfer dynamics, and potential applications of Ce3+- and Eu2+-doped CaMgSi2O6. J. Phys. Chem. C 2021, 125, 5957–5967. [Google Scholar] [CrossRef]
- Sun, L.; Devakumar, B.; Liang, J.; Wang, S.; Sun, Q.; Huang, X. Highly efficient Ce3+→Tb3+ energy transfer induced bright narrowband green emissions from garnet-type Ca2YZr2(AlO4)3:Ce3+,Tb3+ phosphors for white LEDs with high color rendering index. J. Mater. Chem. C 2019, 7, 10471–10480. [Google Scholar] [CrossRef]
- Pei, P.; Wei, R.; Wang, B.; Su, J.; Zhang, Z.; Liu, W. An advanced tunable multimodal luminescent La4GeO8:Eu2+, Er3+ phosphor for multicolor anticounterfeiting. Adv. Funct. Mater. 2021, 31, 2102479. [Google Scholar] [CrossRef]
- Shi, R.; Lin, L.; Dorenbos, P.; Liang, H. Development of potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6. J. Mater. Chem. C 2017, 5, 10737–10745. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Li, X.; Tan, T.; Wu, H.; Su, J.; Yuan, W.; Pang, R.; Jiang, L.; Li, D.; et al. Effect of Pr3+ concentration on the luminescent properties of Ca2LuScGa2Ge2O12 compound with garnet structure. J. Solid State Chem. 2022, 306, 122758. [Google Scholar] [CrossRef]
- Gopal, R.; Manam, J. A novel blue excited white light emitting SrWO4: Pr3+ phosphor for single phase white-LED applications. Ceram. Int. 2022, 48, 30724–30733. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, S.; Xiao, F.; Shan, X.; Lv, X.; Wang, W.; Liang, Y. Long-persistent far-UVC light emission in Pr3+-doped Sr2P2O7 phosphor for microbial sterilization. Inorg. Chem. Front. 2023, 10, 5958–5968. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, L.; Hao, Z.; Wu, H.; Wu, H.; Luo, Y.; Yang, L.; Zhang, X.; Liu, F.; Zhang, J. Multi-peaked broad-band red phosphor Y3Si6N11: Pr3+ for white LEDs and temperature sensing. Dalton Trans. 2020, 49, 17779–17785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, H.; Shi, Q.; Cui, C.; Cui, Y.; Huang, P.; Wang, L. The color-tunable persistent luminescence of Pr3+-activated Ca2Sb2O7 with double anti-counterfeiting potentiality. Ceram. Int. 2022, 48, 36201–36209. [Google Scholar] [CrossRef]
- Tang, W.; Zuo, C.; Ma, C.; Chang, C.; Dang, F.; Liu, H.; Li, Y.; Yuan, X.; Wen, Z.; Wu, L.; et al. Rapid high-contrast reversible coloration of Ba3MgSi2O8:Pr3+ photochromic materials for rewritable light-printing. J. Mater. Chem. C 2022, 10, 18375–18384. [Google Scholar] [CrossRef]
- Yan, S.; Liang, Y.; Zhang, Y.; Lou, B.; Liu, J.; Chen, D.; Miao, S.; Ma, C. A considerable improvement of long-persistent luminescence in LiLuSiO4:Pr3+ phosphors by Sm3+ co-doping for optical tagging applications. J. Mater. Chem. C 2022, 10, 17343–17352. [Google Scholar] [CrossRef]
- Yuan, W.; Pang, R.; Tan, T.; Wu, H.; Wang, S.; Su, J.; Wang, J.; Jiao, S.; Li, C.; Zhang, H. Tuning emission color and improving the warm white persistent luminescence of phosphor BaLu2Al2Ga2SiO12: Pr3+ via Zn2+ co-doping. Dalton Trans. 2021, 50, 12137–12146. [Google Scholar] [CrossRef]
- Wang, S.; Ma, S.; Zhang, G.; Ye, Z.; Cheng, X. High-performance Pr3+-doped scandate optical thermometry: 200 K of sensing range with relative temperature sensitivity above 2%·K−1. ACS Appl. Mater. Interfaces 2019, 11, 42330–42338. [Google Scholar] [CrossRef]
- Shi, R.; Huang, Y.; Tao, Y.; Dorenbos, P.; Ni, H.; Liang, H. Luminescence and energy transfer between Ce3+ and Pr3+ in BaY2Si3O10 under VUV-vis and X-ray excitation. Inorg. Chem. 2018, 57, 8414–8421. [Google Scholar] [CrossRef]
- Ueda, K.; Oya, A.; Nagashima, S.; Ogata, T.; Honma, T.; Omata, T. Site-dependent luminescence from Pr3+ in double-perovskite-type alkaline earth lanthanum tantalates. J. Phys. Chem. C 2023, 127, 8833–8839. [Google Scholar] [CrossRef]
- Yang, C.; Guo, N.; Qu, S.; Ma, Q.; Liu, J.; Chen, S.; Ouyang, R. Design of anti-thermal quenching Pr3+-doped niobate phosphors based on a charge transfer and intervalence charge transfer band excitation-driven strategy. Inorg. Chem. Front. 2023, 10, 4808–4818. [Google Scholar] [CrossRef]
- Hu, C.; Han, X.; Yang, Q.; Wu, J.; Wang, S.; Ye, Z. Fluorescence modulation in Pr3+-doped MGd2O4 (M = Sr, Ba) by the site engineering strategy. J. Lumin. 2023, 255, 119582. [Google Scholar] [CrossRef]
- He, Q.; Fu, R.; Song, X.; Zhu, H.; Su, X.; You, C. Tunable luminescence and energy transfer from Ce3+ to Dy3+ in Ca3Al2O6 host matrix prepared via a facile sol-gel process. J. Alloys Compd. 2019, 810, 151960. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J.; Zhou, W.; Han, J.; Qiu, Z.; Yu, L.; Rong, C.; Lian, S. Multicolor emission in a single-phase phosphor Ca3Al2O6:Ce3+,Li+: Luminescence and site occupancy. J. Am. Ceram. Soc. 2014, 97, 1517–1522. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Qiu, Z.; Zhang, W.; Zhou, W.; Yu, L.; Lian, S. Site-sensitive energy transfer modes in Ca3Al2O6: Ce3+/Tb3+/Mn2+ phosphors. Dalton Trans. 2014, 43, 18134–18145. [Google Scholar] [CrossRef]
- Wang, L.; Guo, H.; Wei, Y.; Noh, H.M.; Jeong, J.H. White luminescence and energy transfer process in Bi3+,Sm3+ co-doped Ca3Al2O6 phosphors. Opt. Mater. 2015, 42, 233–236. [Google Scholar] [CrossRef]
- Fan, F.; Liu, F.; Yu, S.; Wu, J.; Zhang, J.; Wang, T.; Li, Y.; Zhao, L.; Qiang, Q.; Chen, W. Efficient near-infrared luminescence and energy transfer mechanism in Ca3Al2O6: Ce3+, Yb3+ phosphors. J. Lumin. 2022, 241, 118511. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Jin, L.; Bu, Y.; Yang, X.L.; Yan, X. Controlling optical temperature detection of Ca3Al2O6: Yb3+,Er3+ phosphors through doping. J. Alloys Compd. 2019, 773, 393–400. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, W.; Wang, X.; Huang, X.; Zhao, Z. Charge compensation effects of alkali metal ions M+ (Li+, Na+, K+) on luminescence enhancement in red-emitting Ca3Si2O7:Eu3+ phosphors. J. Alloys Compd. 2022, 893, 162265. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, W.; Zhang, Z.; Li, S.; Wang, X. Improved photoluminescence by charge compensation in Dy3+ doped Sr4Ca(PO4)2SiO4 phosphor. Opt. Mater. 2019, 89, 197–202. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Liu, C.; Tang, J.; Kuang, X.; Wu, M.; Su, Q. UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor. Optics Express 2013, 21, 3161–3169. [Google Scholar] [CrossRef]
- Keil, J.-N.; Paulsen, C.; Rosner, F.; Pöttgen, R.; Jüstel, T. Crystallographic and photoluminescence studies on the solid solution Li3Ba2La3–xPrx(WO4)8 (x = 0–3). J. Lumin. 2022, 252, 119415. [Google Scholar] [CrossRef]
- Jia, Y.; Huang, Y.; Zheng, Y.; Guo, N.; Qiao, H.; Zhao, Q.; Lv, W.; You, H. Color point tuning of Y3Al5O12: Ce3+ phosphor via Mn2+-Si4+ incorporation for white light generation. J. Mater. Chem. 2012, 22, 15146–15152. [Google Scholar] [CrossRef]
- Kang, X.; Lü, W.; Zhu, Z.; Jia, C. A novel blue-light excitable Pr3+ doped (Sr, Ba)LaMgTaO6 phosphor for plant growth lighting. J. Rare Earths 2023, 41, 666–672. [Google Scholar] [CrossRef]
- Nie, W.; Yao, L.; Chen, G.; Wu, S.; Liao, Z.; Han, L.; Ye, X. A novel Cr3+-doped Lu2CaMg2Si3O12 garnet phosphor with broadband emission for near-infrared applications. Dalton Trans. 2021, 50, 8446–8456. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, X.; Wu, J.; Guo, R.; Luo, L.; Xiong, Y.; Wang, L.; Chen, W. A novel inequivalent double-site substituted red phosphor Li4AlSbO6:Mn4+ with high color purity: Its structure, photoluminescence properties, and application in warm white LEDs. J. Mater. Chem. C 2021, 9, 13236–13246. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, C. Photoluminescence enhancement and excellent thermal stability of Ca2ZnSi2O7:Pr3+ red-emitting phosphors through charge compensator A+ (Li+, Na+ and K+) co-doping for w-LED applications. Spectrochim. Acta A 2023, 303, 123177. [Google Scholar] [CrossRef]
- Xiong, F.B.; Lin, H.F.; Meng, X.G.; Shen, H.X.; Zhu, W.Z. Photoluminescence properties of a novel red-emitting Pr3+-doped borate phosphor. Optik 2018, 159, 102–107. [Google Scholar] [CrossRef]
- Golim, O.P.; Huang, S.; Yin, L.; Yang, T.; Zhou, H.; Gao, W.; Söhnel, T.; Cao, P. Synthesis, neutron diffraction and photoluminescence properties of a whitlockite structured Ca9MgLi(PO4)7:Pr3+ phosphor. Ceram. Int. 2020, 46, 27476–27483. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, W.; Wang, X.; Huang, X.; Zhang, P. Ca19Zn2(PO4)14:Dy3+, M+ (M = Li, Na, K) white-emitting phosphors: Charge compensation effect of M+ on the photoluminescence enhancement. Ceram. Int. 2021, 47, 14260–14269. [Google Scholar] [CrossRef]
- Han, B.; Li, P.; Zhang, J.; Zhang, J.; Xue, Y.; Shi, H. The effect of Li+ ions on the luminescent properties of a single-phase white light-emitting phosphor α-Sr2P2O7:Dy3+. Dalton Trans. 2015, 44, 7854–7861. [Google Scholar] [CrossRef]
- Gao, M.; Xu, X.; Li, Z.; Dai, H.; Wang, C.; Xin, S.; Zhou, F.; Zhu, G. Synthesis and luminescent properties of Sr2SnO4: Pr3+, M+ (M = Li, Na and K) phosphors with layered perovskite-related structure. J. Lumin. 2020, 226, 117423. [Google Scholar] [CrossRef]
- Singh, R.; Bedyal, A.K.; Manhas, M.; Swart, H.C.; Kumar, V. Charge compensated CaSr2(PO4)2:Sm3+, Li+/Na+/K+ phosphor: Luminescence and thermometric studies. J. Alloys Compd. 2022, 901, 163793. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, L.; Xu, Y.; Yin, S.; You, H. Effect of R+ (R = Li, Na and K) codoping on the luminescence enhancement of broadband NIR BaZrGe3O9:Cr3+ phosphors for NIR LED. J. Lumin. 2021, 236, 118084. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Q.; Devakumar, B.; Liang, J.; Sun, L.; Huang, X. Novel Ca2GdTaO6:Mn4+,M (M = Li+, Na+, K+, and Mg2+) red phosphors for plant cultivation light-emitting diodes: Synthesis and luminescence properties. J. Lumin. 2019, 214, 116525. [Google Scholar] [CrossRef]
Samples | Ca3Al2O6 Host | Ca2.97Pr0.03Al2O6 |
---|---|---|
Space group | P | P |
a = b = c (Å) | 15.26326 (6) | 15.26700 (4) |
α = β = γ (°) | 90 | 90 |
Cell volume (Å3) | 3555.86 (4) | 3558.45 (5) |
Rp (%) | 9.24 | 7.36 |
Rwp (%) | 11.52 | 9.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, D.; Huang, R.; Zhang, Y.; Li, H.; Zhang, W.; Lin, Z.; Guo, Y.; Lin, Z.; Dong, J.; Li, J.-Y. Multi-Band Emission of Pr3+-Doped Ca3Al2O6 and the Effects of Charge Compensator Ions on Luminescence Properties. Nanomaterials 2024, 14, 2. https://doi.org/10.3390/nano14010002
Hou D, Huang R, Zhang Y, Li H, Zhang W, Lin Z, Guo Y, Lin Z, Dong J, Li J-Y. Multi-Band Emission of Pr3+-Doped Ca3Al2O6 and the Effects of Charge Compensator Ions on Luminescence Properties. Nanomaterials. 2024; 14(1):2. https://doi.org/10.3390/nano14010002
Chicago/Turabian StyleHou, Dejian, Rui Huang, Yi Zhang, Hongliang Li, Wenxing Zhang, Zhisen Lin, Yanqing Guo, Zewen Lin, Jianhong Dong, and Jin-Yan Li. 2024. "Multi-Band Emission of Pr3+-Doped Ca3Al2O6 and the Effects of Charge Compensator Ions on Luminescence Properties" Nanomaterials 14, no. 1: 2. https://doi.org/10.3390/nano14010002