Surface Properties of Ti65Zr Alloy Modified with TiZr Oxide and Hydroxyapatite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Analytical Methods
3. Results and Discussions
3.1. Anodizing Process
3.2. Morphology
3.3. XRD Analysis
3.4. Contact Angle
3.5. Electrochemical Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, R.C.S.; Agrelli, A.; Andrade, A.N.; Mendes-Marques, C.L.; Arruda, I.R.S.; Santos, L.R.L.; Vasconcelos, N.F.; Machado, G. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections. Materials 2022, 15, 3150. [Google Scholar] [CrossRef] [PubMed]
- Buser, D. 20 Years of Guided Bone Regeneration in Implant Dentistry, 2nd ed.; Nature Publishing Group: London, UK, 2010. [Google Scholar] [CrossRef]
- Hoque, M.E.; Showva, N.; Ahmed, M.; Rashid, A.B.; Sadique, S.E.; El-Bialy, T.; Xu, H. Titanium and titanium alloys in dentistry: Current trends, recent developments, and future prospects. Heliyon 2022, 8, 11300. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Shams, S.A.A.; Kim, J.N.; Won, J.W.; Choi, S.W.; Hong, J.K.; Lee, C.S. Enhancing low-cycle fatigue life of commercially-pure Ti by deformation at cryogenic temperature. Mater. Sci. Eng. A 2021, 803, 140698. [Google Scholar] [CrossRef]
- Mystkowska, J.; Niemirowicz-Laskowska, K.; Łysik, D.; Tokajuk, G.; Dąbrowski, J.R.; Bucki, R. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects. Int. J. Mol. Sci. 2018, 19, 743. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Moreno, J.M.; Vasilescu, C.; Drob, S.I.; Preda, S.; Vasilescu, E. Microstructural and mechanical properties, surface and electrochemical characterization of a new Ti-Zr-Nb alloy for implant applications. J. Alloys Compd. 2014, 612, 3398–3410. [Google Scholar] [CrossRef]
- Yasuda, K.; Schmuki, P. Control of morphology and composition of self-organized zirconium titanate nanotube in (NH4)2SO4/NH4F electrolytes. Electrochim. Acta 2007, 52, 4053–4061. [Google Scholar] [CrossRef]
- Grandin, H.M.; Berner, S.; Dard, M. A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants. Materials 2012, 5, 1348–1360. [Google Scholar] [CrossRef]
- Nahum, E.Z.; Lugovskoy, S.; Lugovskoy, A.; Kazanski, B.; Sobolev, A. The study of hydroxyapatite growth kinetics on CP—Ti and Ti65Zr treated by Plasma electrolytic oxidation process. J. Mater. Res. Technol. 2023, 24, 2169–2186. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, H.E.; Salih, V.; Knowles, J.C. Hydroxyapatite and titania sol–gel composite coatings on titanium for hard tissue implants; mechanical and in vitro biological performance. J. Biomed. Mater. Res. Part B Appl. Biomater 2005, 72, 1–8. [Google Scholar] [CrossRef]
- Daugaard, H.; Elmengaard, B.; Bechtold, J.E.; Jensen, T.; Soballe, K. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J. Biomed. Mater. Res. Part A 2010, 92, 913–921. [Google Scholar] [CrossRef]
- Miralami, R.; Haider, H.; Sharp, J.G.; Namavar, F.; Hartman, C.W.; Garvin, K.L.; Hunter, C.D.; Premaraj, T.; Thiele, G.M. Surface nano-modification by ion beam–assisted deposition alters the expression of osteogenic genes in osteoblasts. Proc. Inst. Mech. Eng. 2019, 233, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Shao, D.; Wang, P.; Chen, D.; Zhang, Y.; Li, M.; Zhao, J.; Zhou, Y. Enhanced osteoblast adhesion on amino-functionalized titanium surfaces through combined plasma enhanced chemical vapor deposition (PECVD) method. RSC Adv. 2016, 6, 82688–82697. [Google Scholar] [CrossRef]
- Schwartz, A.; Kossenko, A.; Zinigrad, M.; Danchuk, V.; Sobolev, A. Cleaning Strategies of Synthesized Bioactive Coatings by PEO on Ti-6Al-4V Alloys of Organic Contaminations. Materials 2023, 16, 4624. [Google Scholar] [CrossRef] [PubMed]
- Kravanja, K.A.; Finšgar, M. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients. Mater. Des. 2022, 217, 110653. [Google Scholar] [CrossRef]
- Bashirom, N.; Tan, W.K.; Kawamura, G.; Matsuda, A.; Lockman, Z. Formation of self-organized ZrO2–TiO2 and ZrTiO4–TiO2 nanotube arrays by anodization of Ti–40Zr foil for Cr(VI) removal. J. Mater. Res. Technol. 2022, 19, 2991–3003. [Google Scholar] [CrossRef]
- Pantazi, A.; Vardaki, M.; Mihai, G.; Ionita, D.; Stoian, A.B.; Enachescu, M.; Demetrescu, I. Understanding surface and interface properties of modified Ti50Zr with nanotubes. Appl. Surf. Sci. 2020, 506, 144661. [Google Scholar] [CrossRef]
- Paulose, M.; Peng, L.; Popat, K.C.; Varghese, O.K.; LaTempa, T.J.; Bao, N.; Desaic, T.A.; Grimes, C.A. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J. Membr. Sci. 2018, 319, 199–205. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Z.; Wang, S.; Wang, S.; Niu, Q.; Wu, Y.; Jia, F.; Bian, A.; Xie, L.; Qiao, H.; et al. Mg/Cu-doped TiO2 nanotube array: A novel dual-function system with self-antibacterial activity and excellent cell compatibility. Mater. Sci. Eng. C 2021, 128, 112322. [Google Scholar] [CrossRef]
- Park, J.; Cimpean, A.; Tesler, A.B.; Mazare, A. Anodic TiO2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. Nanomaterials 2021, 11, 2359. [Google Scholar] [CrossRef]
- Aw, M.S.; Simovic, S.; Addai-Mensaha, J.; Losic, D. Polymeric micelles in porous and nanotubular implants as a new system for extended delivery of poorly soluble drugs. J. Mater. Chem. 2011, 21, 7082–7089. [Google Scholar] [CrossRef]
- Losic, D.; Simovic, S. Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin. Drug Deliv. 2009, 6, 1363–1381. [Google Scholar] [CrossRef] [PubMed]
- Kodama, A.; Bauer, S.; Komatsu, A.; Asoh, H.; Ono, S.; Schmuki, P. Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater. 2009, 5, 2322–2330. [Google Scholar] [CrossRef] [PubMed]
- Ulasevich, S.A.; Poznyak, S.K.; Kulak, A.I.; Lisenkov, A.D.; Starykevich, M.; Skorb, E.V. Photocatalytic Deposition of Hydroxyapatite onto a Titanium Dioxide Nanotubular Layer with Fine Tuning of Layer Nanoarchitecture. Langmuir 2016, 32, 4016–4021. [Google Scholar] [CrossRef] [PubMed]
- Aryan, N.; Behpour, M.; Benvidi, A.; Kashi, F.J.; Azimzadeh, M.; Zare, H.R. Evaluation of sodium alendronate drug released from TiO2 nanoparticle doped with hydroxyapatite and silver–strontium for enhancing antibacterial effect and osteoinductivity. Mater. Chem. Phys. 2023, 295, 126934. [Google Scholar] [CrossRef]
- Ionita, D.; Bajenaru-Georgescu, D.; Totea, G.; Mazare, A.; Schmuki, P.; Demetrescu, I. Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes. Int. J. Pharm. 2017, 517, 296–302. [Google Scholar] [CrossRef]
- Nahum, E.Z.; Lugovskoy, A.; Lugovskoy, S.; Sobolev, A. Synthesis of Titanium Oxide Nanotubes Loaded with Hydroxyapatite. Nanomaterials 2023, 13, 2743. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Jin, M.; Lu, X.; Qiao, Y.; Wang, L.N.; Volinsky, A.A. Fabrication and characterization of anodic oxide nanotubes on TiNb alloys. Rare Met. 2016, 35, 140–148. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L.; Electrochemical Polarization:, I. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104, 56. [Google Scholar] [CrossRef]
- Deen, K.M.; Farooq, A.; Raza, M.A.; Haider, W. Effect of electrolyte composition on TiO2 nanotubular structure formation and its electrochemical evaluation. Electrochim. Acta 2014, 117, 329–335. [Google Scholar] [CrossRef]
- Jarosz, M.; Syrek, K.; Kapusta-Kołodziej, J.; Mech, J.; Małek, K.; Hnida, K.; Łojewski, T.; Jaskuła, M.; Sulka, G.D. Heat Treatment Effect on Crystalline Structure and Photoelectrochemical Properties of Anodic TiO2 Nanotube Arrays Formed in Ethylene Glycol and Glycerol Based Electrolytes. J. Phys. Chem. C 2015, 119, 24182–24191. [Google Scholar] [CrossRef]
- Saleh, M.M.; Touny, A.H.; Al-Omair, M.A. Biodegradable/biocompatible coated metal implants for orthopedic applications. Biomed. Mater. Eng. 2016, 27, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Udomluck, N.; Lee, H.; Hong, S.; Lee, S.; Park, H. Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Appl. Surf. Sci. 2020, 520, 146311. [Google Scholar] [CrossRef]
- Praharaj, R.; Mishra, S.; Rautray, T.R. Growth mechanism of aligned porous oxide layers on titanium by anodization in electrolyte containing Cl−. Mater. Today Proc. 2022, 62, 6216–6220. [Google Scholar] [CrossRef]
- Faghihi-Sani, M.A.; Arbabi, A.; Mehdinezhad-Roshan, A. Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique. Ceram Int. 2013, 39, 1793–1798. [Google Scholar] [CrossRef]
- Vangolu, Y.; Alsaran, A.; Yildirim, O.S. Wear properties of micro-arc oxidized and hydrothermally treated Ti6Al4V alloy in simulated body fluid. Wear 2011, 271, 2322–2327. [Google Scholar] [CrossRef]
- Du, L.W.; Bian, S.; Gou, B.D.; Jiang, Y.; Huang, J.; Gao, Y.X.; Zhao, Y.D.; Wen, W.; Zhang, T.L.; Wang, K. Structure of clusters and formation of amorphous calcium phosphate and hydroxyapatite: From the perspective of coordination chemistry. Cryst. Growth Des. 2013, 13, 3103–3109. [Google Scholar] [CrossRef]
- Munirathinam, B.; Pydimukkala, H.; Ramaswamy, N.; Neelakantan, L. Influence of crystallite size and surface morphology on electrochemical properties of annealed TiO2 nanotubes. Appl. Surf. Sci. 2015, 355, 1245–1253. [Google Scholar] [CrossRef]
- Gittens, R.A.; Scheideler, L.; Rupp, F.; Hyzy, S.L.; Geis-Gerstorfer, J.; Schwartz, Z.; Boyan, B.D. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014, 10, 2907–2918. [Google Scholar] [CrossRef]
- Sun, S.; Sun, Y.; Wen, J.; Zhang, B.; Liao, X.; Yin, G.; Huang, Z.; Pu, X. MoO3−x-deposited TiO2 nanotubes for stable and high-capacitance supercapacitor electrodes. RSC Adv. 2018, 8, 21823–21828. [Google Scholar] [CrossRef]
- Say, W.C.; Chen, C.C.; Shiu, Y.H. Monitoring the effects of growing titania nanotubes on titanium substrate by electrochemical impedance spectroscopy measurement. Jpn. J. Appl. Phys. 2009, 48, 035004. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Y.F. One-step facile preparation of ZnO nanorods as high-performance photoanodes for photoelectrochemical cathodic protection. Electrochim. Acta 2018, 276, 311–318. [Google Scholar] [CrossRef]
- Sobolev, A.; Bograchev, D.; Borodianskiy, K.; Zinigrad, M. Kinetics and mechanism of corrosion of oxide coating fabricated on aluminum alloy by the plasma electrolytic oxidation in molten salt. Corros. Sci. 2022, 208, 110604. [Google Scholar] [CrossRef]
Anodizing | Soaking in Calcium Glycerophosphate Solution | Exposure Test in Hanks’ Balanced Salt Solution | |||
---|---|---|---|---|---|
C = 0.5 [g/L] 24 h | C = 5 [g/L] 24 h | 0 Days | 3 Days | ||
Ti65Zr | Without treatment | ||||
S1 | + | ||||
S2 | + | + | + | ||
S3 | + | + | + | ||
S4 | + | + | + | ||
S5 | + | + | + |
Sample Number | Ti [at.%] | Zr [at.%] | O [at.%] | P [at.%] | Ca [at.%] | Ca/P | |
---|---|---|---|---|---|---|---|
Sp. 1 | S1 | 22.3 | 23.5 | 54.2 | - | - | - |
Sp. 2 | S2 | 22.1 | 23.3 | 54.2 | 0.15 | 0.25 | 1.60 |
Sp. 3 | S2 | 22.5 | 22.8 | 54.4 | 0.1 | 0.20 | 2.00 |
Sp. 4 | S2 | 19.8 | 21.8 | 54.2 | 1.70 | 2.50 | 1.67 |
Sp. 5 | S3 | 17.0 | 17.9 | 50.6 | 6.30 | 8.20 | 1.30 |
Sp. 6 | S3 | 22.4 | 23.3 | 54.3 | 0.23 | 0.4 | 1.72 |
Sp. 7 | S3 | 19.1 | 20.1 | 52.1 | 3.18 | 5.47 | 1.72 |
Sp. 8 | S4 | - | - | 65.8 | 12.8 | 21.4 | 1.67 |
Sp. 9 | S5 | 8.2 | 8.6 | 68.2 | 6.2 | 8.8 | 1.42 |
Contact Angle [°] | SE–γ | |||
---|---|---|---|---|
Hanks’ BSS | Water | Glycerol | [mJ∙m−2] | |
Ti65Zr | 84.1 ± 1.3 | 76.3 ± 1.1 | 90.3 ± 1.2 | 41.6 ± 1.2 |
S1 | 70.2 ± 1.2 | 63.1 ± 1.1 | 77.4 ± 1.3 | 51.9 ± 1.2 |
S2 | 25.2 ± 1.3 | 16.8 ± 1.4 | 33.2 ± 1.2 | 74.5 ± 1.3 |
S3 | 29.3 ± 1.0 | 21.4 ± 0.9 | 37.6 ± 1.0 | 74.1 ± 1.1 |
S4 | 18.5 ± 0.5 | 10.3 ± 0.7 | 26.1 ± 0.9 | 74.8 ± 0.6 |
S5 | 24.3 ± 0.8 | 16.4 ± 1.0 | 32.6 ± 1.1 | 74.7 ± 1.3 |
Ecorr vs. Ag/AgClsat [mV] | Icorr [nA∙cm−2] | βa [mV·dec−1] | −βc [mV·dec−1] | Rp [kΩ·cm−2] | |
---|---|---|---|---|---|
Ti65Zr | −363 ± 5 | 386 ± 3 | 705 | 421 | 296.9 |
S1 | −269 ± 6 | 171 ± 4 | 679 | 302 | 531.5 |
S2 | −225 ± 3 | 159 ± 2 | 441 | 336 | 549.2 |
S3 | −220 ± 3 | 150 ± 2 | 352 | 223 | 551.6 |
S4 | −219 ± 4 | 105 ± 3 | 259 | 379 | 637.1 |
S5 | −213 ± 3 | 161 ± 2 | 189 | 178 | 586.1 |
Impedance Spectroscopy Parameters | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
CPE1 × 10−5 [S·cm−2·s−n] | 0.21 | 0.19 | 0.15 | 0.132 | 0.128 |
n1 | 0.94 | 0.93 | 0.87 | 0.89 | 0.92 |
R1 [kΩ·cm2] | 1099 | 1140 | 1893 | 2097 | 3348 |
CPE2 × 10−5 [S·cm−2·s−n] | 0.30 | 0.27 | 0.22 | 0.206 | 0.171 |
n2 | 0.96 | 0.94 | 0.86 | 0.95 | 0.903 |
R2 [kΩ·cm2] | 529.0 | 547.1 | 549.4 | 635.8 | 586.7 |
Zf→0 Hz [kΩ·cm2] | 530.1 | 548.2 | 551.3 | 637.9 | 589.9 |
χ2 × 10−4 | 1.2 | 2.4 | 2.5 | 3.1 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahum, E.Z.; Lugovskoy, A.; Lugovskoy, S.; Sobolev, A. Surface Properties of Ti65Zr Alloy Modified with TiZr Oxide and Hydroxyapatite. Nanomaterials 2024, 14, 15. https://doi.org/10.3390/nano14010015
Nahum EZ, Lugovskoy A, Lugovskoy S, Sobolev A. Surface Properties of Ti65Zr Alloy Modified with TiZr Oxide and Hydroxyapatite. Nanomaterials. 2024; 14(1):15. https://doi.org/10.3390/nano14010015
Chicago/Turabian StyleNahum, Elinor Zadkani, Alex Lugovskoy, Svetlana Lugovskoy, and Alexander Sobolev. 2024. "Surface Properties of Ti65Zr Alloy Modified with TiZr Oxide and Hydroxyapatite" Nanomaterials 14, no. 1: 15. https://doi.org/10.3390/nano14010015
APA StyleNahum, E. Z., Lugovskoy, A., Lugovskoy, S., & Sobolev, A. (2024). Surface Properties of Ti65Zr Alloy Modified with TiZr Oxide and Hydroxyapatite. Nanomaterials, 14(1), 15. https://doi.org/10.3390/nano14010015