Co-Removal of Fe/V Impurity in H2TiO3 Synthesized from Ti-Bearing Blast Furnace Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Method
2.3. Characterization
3. Results and Discussion
3.1. The Hydrolysis Behavior and Occurrence form of Fe/V in MTA
3.2. Thermodynamic Equilibrium Calculation of the Hydrolysis Process
3.3. Two-Step Hydrothermal Hydrolysis for Fe and V Co-Removal
4. Conclusions
- (1)
- Fe3+ and V3+ easily hydrolyzed with TiO2+ and entered the MTA lattice, resulting in these impurities being difficult to remove by washing. Traditionally manipulating Ti3+ could only remove one of Fe or V.
- (2)
- Based on thermodynamic calculations, the conditions for neither Fe nor V hydrolysis were determined: (a) Ti3+ = 0.01 M, F = 3.0, T = 130 °C. (b) Ti3+ = 0.01 M, F = 3.5, T = 150 °C.
- (3)
- To improve the Ti hydrolysis ratio (>0.95) and reduce the reaction time (4–6 h), two-step hydrolysis was provided (130 °C, 2 h + 150 °C, 2 h, Ti3+ = 0.01 M, F = 3.0), and impurity levels of Fe/V were notably reduced (Fe = 21 ppm, V = 145 ppm).
- (4)
- The residual V impurity may have been due to the adsorption of the V3+-SO42- complex on the surface of the MTA particles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, G.; Wang, M.; Dang, J.; Zhang, R.; Lv, Z.; He, W.; Lv, X. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag. Waste Manag. 2021, 120, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Qiu, Y.; Yu, B.; Xie, X.; Dong, J.; Hou, C.; Li, J.; Liu, C. Titanium Extraction from Titania-Bearing Blast Furnace Slag: A Review. JOM 2022, 74, 654–667. [Google Scholar] [CrossRef]
- Fan, G.; Dang, J.; Lv, X.; Hu, M. Effect of basicity on the crystallization behavior of TiO2–CaO–SiO2 ternary system slag. CrystEngComm 2018, 20, 5422–5431. [Google Scholar] [CrossRef]
- Kamarou, M.; Moskovskikh, D.; Chan, H.L.; Wang, H.; Li, T.; Akinwande, A.A.; Romanovski, V. Low energy synthesis of anhydrite cement from waste lime mud. J. Chem. Technol. Biotechnol. 2023, 98, 789–796. [Google Scholar] [CrossRef]
- Smorokov, A.; Kantaev, A.; Bryankin, D.; Miklashevich, A.; Kamarou, M.; Romanovski, V. Low-temperature desiliconization of activated zircon concentrate by NH4HF2 solution. Miner. Eng. 2022, 189, 107909. [Google Scholar] [CrossRef]
- Smorokov, A.; Kantaev, A.; Bryankin, D.; Miklashevich, A.; Kamarou, M.; Romanovski, V. Low-temperature method for desiliconization of polymetallic slags by ammonium bifluoride solution. Environ. Sci. Pollut. Res. 2023, 30, 30271–30280. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yang, F.; Yi, M.; Xiang, L. Estimation of Reaction Heat in Ti-Bearing Blast Furnace Slag—Sulfuric Acid System Based on Mechanical Mixture Model. Min. Metall. Explor. 2021, 38, 1247–1252. [Google Scholar] [CrossRef]
- Zhou, L.; Peng, T.; Sun, H.; Wang, S. Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting. RSC Adv. 2022, 12, 34990–35001. [Google Scholar] [CrossRef]
- He, S.; Wang, Y. Extraction of Valuable Components from Ti-Bearing Blast Furnace Slag Using Sulfuric Acid Calcination Process. JOM 2022, 75, 392–399. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Liu, W.; Zhang, G.; Tang, S.; Yue, H.; Liang, B.; Luo, D. Recovery of titanium, aluminum, magnesium and separating silicon from titanium-bearing blast furnace slag by sulfuric acid curing—Leaching. Int. J. Min. Met. Mater. 2022, 29, 1705–1714. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, F.; Yi, M.; Xiang, L. Rule of hydrothermal hydrolysis of Mg/Al-bearing TiOSO4 solution. Inorg. Chem. Ind. 2021, 53, 113–116. [Google Scholar] [CrossRef]
- Winkler, J. Titanium Dioxide; Vincentz Network: Hannover, Germany, 2013. [Google Scholar]
- Xue, T.; Wang, L.; Qi, T.; Chu, J.; Qu, J.; Liu, C. Decomposition kinetics of titanium slag in sodium hydroxide system. Hydrometallurgy 2009, 95, 22–27. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Wang, L.; Zhao, H.; Chen, D.; Zhong, B.; Wang, J.; Qi, T. Production of Rutile TiO2 Pigment from Titanium Slag Obtained by Hydrochloric Acid Leaching of Vanadium-Bearing Titanomagnetite. Ind. Eng. Chem. Res. 2013, 53, 70–77. [Google Scholar] [CrossRef]
- Grzmil, B.; Grela, D.; Kic, B.; Podsiadły, M. The influence of admixtures on the course of hydrolysis of titanyl sulfate. Pol. J. Chem. Technol. 2008, 10, 4–12. [Google Scholar] [CrossRef]
- Speight, J. Lange’s Handbook of Chemistry; McGraw-Hill Book Co., Inc.: New York, NY, USA, 2005. [Google Scholar]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Gázquez, M.J.; Bolívar, J.P.; Garcia-Tenorio, R.; Vaca, F. A Review of the Production Cycle of Titanium Dioxide Pigment. Mater. Sci. Appl. 2014, 5, 441–458. [Google Scholar] [CrossRef]
- Lu, R.; Liu, C.; Wub, J.; Sun, W.; Sun, Q.; Dong, L. Process optimization of the extra-adding seeded hydrolysis of TiOSO4 to H2TiO3 by using the unenriched solution for the manufacture of TiO2 pigment. J. Cryst. Growth 2021, 572, 126268. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Li, G. Preparation of nano-titanium dioxide from ilmenite using sulfuric acid-decomposition by liquid phase method. Powder Technol. 2016, 287, 256–263. [Google Scholar] [CrossRef]
- Elnagar, M.M.; Hashem, M.A.; Hassanien, M.M.; Ismail, M.A. pH-controlled mixed micelle cloud point extraction for selective removal of trace levels of iron from titanium concentrates. Sep. Purif. Technol. 2021, 265, 118534. [Google Scholar] [CrossRef]
- Middlemas, S.; Fang, Z.Z.; Fan, P. A new method for production of titanium dioxide pigment. Hydrometallurgy 2013, 131–132, 107–113. [Google Scholar] [CrossRef]
- Peng, H.; Shang, Q.; Chen, R.; Zhang, L.; Chen, Y.; Guo, J. Step-Adsorption of Vanadium (V) and Chromium (VI) in the Leaching Solution with Melamine. Sci. Rep. 2020, 10, 6326. [Google Scholar] [CrossRef]
- Lin, S.; Yang, F.; Yang, Z.; Wang, J.; Xiang, L. Preparation of Hydrated TiO2 Particles by Hydrothermal Hydrolysis of Mg/Al-Bearing TiOSO4 Solution. Nanomaterials 2023, 13, 1179. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Huang, S.; Yang, Y. Anatase TiO2 white pigment production from unenriched industrial titanyl sulfate solution via short sulfate process. Dyes Pigm. 2013, 96, 609–613. [Google Scholar] [CrossRef]
- Yang, F.; Luo, W.; Wang, J.; Xiang, L. Effects of Mg2+ doped TiO2 defect structures on TiO2 anatase-to-rutile phase transition. J. Alloys Compd. 2023, 958, 170529. [Google Scholar] [CrossRef]
- Wu, B.; Yang, Z.; Dai, X.; Yin, X.; Gan, Y.; Nie, F.; Ren, Z.; Cao, Y.; Li, Z.; Zhang, X. Hierarchical sheet-on-sheet heterojunction array of a beta-Ni(OH)2/Fe(OH)3 self-supporting anode for effective overall alkaline water splitting. Dalton Trans. 2021, 50, 12547–12554. [Google Scholar] [CrossRef] [PubMed]
- Balakhonov, S.V.; Efremova, M.V.; Ivanov, V.K.; Churagulov, B.R. Facile synthesis of vanadia aerogels with controlled V3+/V4+ ratio. Mater. Lett. 2015, 156, 109–112. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Zeng, M.; Li, X.; Chen, L.; Yang, Z.; Chen, J.; Guo, B.; Ma, Z.; Li, X. Sulfite modified and ammonium ion intercalated vanadium hydrate with enhanced redox kinetics for aqueous zinc ion batteries. J. Power Source 2021, 496, 229832. [Google Scholar] [CrossRef]
- Szilágyi, I.; Königsberger, E.; May, P.M. Characterization of Chemical Speciation of Titanyl Sulfate Solutions for Production of Titanium Dioxide Precipitates. Inorg. Chem. 2009, 48, 2200–2204. [Google Scholar] [CrossRef] [PubMed]
- Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L. The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds. Chem. Rev. 2004, 104, 849–902. [Google Scholar] [CrossRef]
- Meites, L.; Matijević, E. A microcalorimetric investigation of the thermodynamics of formation of the HSO4−, AlSO4+, and Al(SO4)2− ions in aqueous solutions at temperatures between 25 and 70 °C. Anal. Chim. Acta 1982, 139, 197–205. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Cai, G.; Wen, L.; Song, Y.; Zhao, X. Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. J. Hazard. Mater. 2009, 169, 1112–1118. [Google Scholar] [CrossRef]
- Sathyamoorthy, S.; Moggridge, G.D.; Hounslow, M.J. Particle Formation during Anatase Precipitation of Seeded Titanyl Sulfate Solution. Cryst. Growth Des. 2001, 1, 123–129. [Google Scholar] [CrossRef]
- Zheng, L.; Liang, B.; Lü, L.; Jia, L.; Li, C. Effect of impurities on the hydrolysis of low-concentration titanyl sulfate solutions. Res. Chem. Intermed. 2015, 41, 5423–5438. [Google Scholar] [CrossRef]
- Kanamori, K.; Kameda, E.; Okamoto, K.-I. Heptacoordinate vanadium (III) complexes containing a didentate sulfate ligand. X-ray structures of [V2(SO4)3 {N, N′-bis (2-pyridylmethyl)-1, 2-ethanediamine}2] and [V(SO4){N, N, N′, N′-tetrakis (2-pyridylmethyl)-1, 2-ethanediamine}]+ and their solution properties. Bull. Chem. Soc. Jpn. 1996, 69, 2901–2909. [Google Scholar] [CrossRef]
- Tian, M.; Liu, Y.; Wang, L.; Chen, D.; Zhao, H.; Meng, F.; Zhen, Y.; Qi, T. Role of aluminum salt on thermal hydrolysis of titanyl sulfuric–chloric mixture acid solution. J. Mater. Res. Technol. 2021, 14, 2486–2496. [Google Scholar] [CrossRef]
Elements | TiO2 | CaO | SiO2 | MgO | Al2O3 | TFe | MnO | V2O5 |
---|---|---|---|---|---|---|---|---|
wt.% | 21.4 | 27.2 | 27.0 | 8.8 | 12.8 | 1.5 | 0.7 | 0.2 |
Component | Ti | Mg | Al | Fe | Mn | V | F-Value | Ti3+ |
---|---|---|---|---|---|---|---|---|
mol·L−1 | 0.719 | 0.520 | 0.722 | 0.027 | 0.013 | 0.006 | 3.02 | 0.011 |
Ions | Mg2+ | Al3+ | Fe2+ | Fe3+ | V3+ | VO2+ | Mn2+ |
---|---|---|---|---|---|---|---|
mol·L−1 | 0.520 | 0.722 | 0.029 | 0.029 | 0.005 | 0.005 | 0.013 |
pKsp(25 °C) [16] | 10.74 | 32.88 | 15.1 | 37.4 | 34.4 | 22.13 | 12.73 |
Precipitation pH | 8.74 | 3.17 | 7.22 | 2.05 | 3.30 | 7.39 | 10.39 |
TiO2 (%) | SO3 (%) | Mg (ppm) | Al (ppm) | Fe (ppm) | V (ppm) | Mn (ppm) | |
---|---|---|---|---|---|---|---|
Fe-MTA | 79.2 | 3.16 | <5 | 1138 | 3854 | <4 | <4 |
V-MTA | 78.4 | 3.31 | <5 | 1202 | 8 | 1205 | <4 |
2θ (°) | Peak Height | FWHM | Crystal Size (Å) | |
---|---|---|---|---|
Blank | 25.223 | 5799 | 0.617 | 134 |
Fe-MTA | 25.186 | 4377 | 0.821 | 100 |
V-MTA | 25.352 | 4825 | 0.805 | 102 |
Conc. (mol·L−1) | Impurities-Bearing TiOSO4 Solution | Sulfate Process | |||
---|---|---|---|---|---|
TiOSO4 | 0.719 | 2.375 | |||
F-value | 1.5 | 2.0 | 2.5 | 3.0 | 1.8 |
Free H2SO4 | 0.163 | 0.459 | 0.755 | 1.051 | 1.115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Peng, Q.; Wang, J.; Xiang, L. Co-Removal of Fe/V Impurity in H2TiO3 Synthesized from Ti-Bearing Blast Furnace Slag. Nanomaterials 2024, 14, 12. https://doi.org/10.3390/nano14010012
Yang F, Peng Q, Wang J, Xiang L. Co-Removal of Fe/V Impurity in H2TiO3 Synthesized from Ti-Bearing Blast Furnace Slag. Nanomaterials. 2024; 14(1):12. https://doi.org/10.3390/nano14010012
Chicago/Turabian StyleYang, Fan, Qiugui Peng, Jing Wang, and Lan Xiang. 2024. "Co-Removal of Fe/V Impurity in H2TiO3 Synthesized from Ti-Bearing Blast Furnace Slag" Nanomaterials 14, no. 1: 12. https://doi.org/10.3390/nano14010012
APA StyleYang, F., Peng, Q., Wang, J., & Xiang, L. (2024). Co-Removal of Fe/V Impurity in H2TiO3 Synthesized from Ti-Bearing Blast Furnace Slag. Nanomaterials, 14(1), 12. https://doi.org/10.3390/nano14010012