Enhanced Electrocatalytic Nitrate Reduction to Ammonia Using Functionalized Multi-Walled Carbon Nanotube-Supported Cobalt Catalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatments of Multi-Walled Carbon Nanotubes (MWCNTs)
2.3. Synthesis of Multi-Walled Carbon Nanotube Material with Cobalt Sites
2.4. Fabrication of Working Electrode
2.5. Characterization
2.6. Electrochemical Measurements
2.7. Product Analysis and Detection
3. Results and Discussions
3.1. Structural and Composition Characterization
3.2. Product Detection and Electrochemical Properties
Catalysts | Electrolytes | Yield Rate/mg cm−2 h−1 | Yield Rate/mmol g−1 h−1 | Faradaic Efficiency (NH3)/% | Ref. |
---|---|---|---|---|---|
CoP/TiO2@TP | 0.1 M NaOH + 0.1 M NO3− | 8.50 | - | 95.00 (−0.3 V vs. RHE) | [53] |
S-Co3O4 | 0.1 M Na2SO4 + 0.1 M NO3− | - | 174.20 | 89.90 (−0.7 V vs. RHE) | [54] |
Co3O4/Co | 0.1 M Na2SO4 + 1 mg mL−1 NO3− | 4.43 | - | 88.70 (−0.8 V vs. RHE) | [55] |
CuxCoyHTP | 0.5 M Na2SO4 + 0.1 M NO3− | 5.09 | - | 96.40 (−0.6 V vs. RHE) | [56] |
CoB@TiO2/TP | 0.1 M Na2SO4 + 400 ppm NO2− | 3.96 | - | 95.20 (−0.7 V vs. RHE) | [57] |
Co3O4@CNF | 0.1 M NaOH + 0.1 M NO3– | - | 23.40 | 92.70 (−0.7 V vs. RHE) | [58] |
Co/MWCNTs | 0.1 M KOH + 0.1 M NO3− | 4.03 | - | 84.72 (−0.1 V vs. RHE) | This work |
ECSA (cm2) | Co/Carbon Powder | Co/MWCNTs |
58.1075 | 134.03 |
Materials | Carbon (wt%) | Oxygen (wt%) | Cobalt (wt%) | Ratio of Elements | Total (%) |
---|---|---|---|---|---|
Co/MWCNTs | 40.20 | 20.97 | 38.80 | 2:1:2 | 99.97 |
Co/carbon powder | 90.17 | 5.58 | 4.25 | 16:1:1 | 100 |
MWCNTs | 83.01 | 8.42 | - | - | 91.43 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, X.; Zhu, H.; Yang, X.; Xue, S.; Liang, Z.; Ren, X.; Liu, A.; Wu, G. Recent advances in designing efficient electrocatalysts for electrochemical nitrate reduction to ammonia. Small Struct. 2022, 4, 2200202. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, C.; Yu, Y.; Lu, S.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269. [Google Scholar] [CrossRef]
- Singh, N.; Goldsmith, B.R. Role of electrocatalysis in the remediation of water pollutants. ACS Catal. 2020, 10, 3365–3371. [Google Scholar] [CrossRef]
- Liu, J.-X.; Richards, D.; Singh, N.; Goldsmith, B.R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 2019, 9, 7052–7064. [Google Scholar] [CrossRef]
- Suryanto, B.H.R.; Matuszek, K.; Choi, J.; Hodgetts, R.Y.; Du, H.-L.; Bakker, J.M.; Kang, C.S.M.; Cherepanov, P.V.; Simonov, A.N.; MacFarlane, D.R. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 2021, 372, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, K.; Ai, X.; Liang, X.; Zhang, Q.; Chen, H.; Zou, X. Theory-guided electrocatalyst engineering: From mechanism analysis to structural design. Chin. J. Catal. 2022, 43, 2987–3018. [Google Scholar] [CrossRef]
- Foster, S.L.; Bakovic, S.I.P.; Duda, R.D.; Maheshwari, S.; Milton, R.D.; Minteer, S.D.; Janik, M.J.; Renner, J.N.; Greenlee, L.F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500. [Google Scholar] [CrossRef]
- Hawtof, R.; Ghosh, S.; Guarr, E.; Xu, C.; Mohan Sankaran, R.; Renner, J.N. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Sci. Adv. 2019, 5, eaat5778. [Google Scholar] [CrossRef]
- Liu, C.; Li, Q.; Wu, C.; Zhang, J.; Jin, Y.; MacFarlane, D.R.; Sun, C. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, W.; He, Z.; Liu, Q.; Chen, H.; Zhou, D.; Zhang, N.; Kang, X.; Chen, Y. Regulating surface oxygen species on copper (i) oxides via plasma treatment for effective reduction of nitrate to ammonia. Appl. Catal. B Environ. 2022, 305, 121021. [Google Scholar] [CrossRef]
- Rosca, V.; Duca, M.; de Groot, M.T.; Koper, M.T.M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244. [Google Scholar] [CrossRef] [PubMed]
- Daiyan, R.; Tran-Phu, T.; Kumar, P.; Iputera, K.; Tong, Z.; Leverett, J.; Khan, M.H.A.; Asghar Esmailpour, A.; Jalili, A.; Lim, M.; et al. Nitrate reduction to ammonium: From CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ. Sci. 2021, 14, 3588–3598. [Google Scholar] [CrossRef]
- Su, J.F.; Kuan, W.-F.; Liu, H.; Huang, C.P. Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity. Appl. Catal. B Environ. 2019, 257, 117909. [Google Scholar] [CrossRef]
- Qiu, W.; Chen, X.; Liu, Y.; Xiao, D.; Wang, P.; Li, R.; Liu, K.; Jin, Z.; Li, P. Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis. Appl. Catal. B Environ. 2022, 315, 121548. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, W.-D.; Zhao, H.; Zou, Y.; Zhang, Z.-Y.; Liu, J.; Wang, J.; Gu, Z.-G.; Yan, X. High-valent cobalt active sites derived from electrochemical activation of metal-organic frameworks for efficient nitrate reduction to ammonia. Appl. Catal. B Environ. 2024, 340, 123237. [Google Scholar] [CrossRef]
- Liu, H.; Timoshenko, J.; Bai, L.; Li, Q.; Rüscher, M.; Sun, C.; Roldan Cuenya, B.; Luo, J. Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia. ACS Catal. 2023, 13, 1513–1521. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, C.; Han, S.; Huang, Y.; Du, X.; Zhang, B.; Yu, Y. Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets. ACS Energy Lett. 2022, 7, 1187–1194. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Geng, Y.; Li, X.; Xu, J. Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation. Green Energy Environ. 2022, in press. [CrossRef]
- Li, J.; Zhan, G.; Yang, J.; Quan, F.; Mao, C.; Liu, Y.; Wang, B.; Lei, F.; Li, L.; Chan, A.W.M.; et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 2020, 142, 7036–7046. [Google Scholar] [CrossRef]
- Wang, Z.; Young, S.D.; Goldsmith, B.R.; Singh, N. Increasing electrocatalytic nitrate reduction activity by controlling adsorption through ptru alloying. J. Catal. 2021, 395, 143–154. [Google Scholar] [CrossRef]
- Li, W.; Xiao, C.; Zhao, Y.; Zhao, Q.; Fan, R.; Xue, J. Electrochemical reduction of high-concentrated nitrate using Ti/TiO2 nanotube array anode and fe cathode in dual-chamber cell. Catal. Lett. 2016, 146, 2585–2595. [Google Scholar] [CrossRef]
- Duan, W.; Li, G.; Lei, Z.; Zhu, T.; Xue, Y.; Wei, C.; Feng, C. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Res. 2019, 161, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, J.; Wang, J.; Cabrera, C.R.; Chen, Z. A Co–N4 moiety embedded into graphene as an efficient single-atom-catalyst for no electrochemical reduction: A computational study. J. Mater. Chem. A 2018, 6, 7547–7556. [Google Scholar] [CrossRef]
- Li, X.; Xing, W.; Hu, T.; Luo, K.; Wang, J.; Tang, W. Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications. Coord. Chem. Rev. 2022, 473, 214811. [Google Scholar] [CrossRef]
- Guo, D.-J.; Jing, Z.-H. A novel co-precipitation method for preparation of Pt-CeO2 composites on multi-walled carbon nanotubes for direct methanol fuel cells. J. Power Sources 2010, 195, 3802–3805. [Google Scholar] [CrossRef]
- Dilpazir, S.; He, H.; Li, Z.; Wang, M.; Lu, P.; Liu, R.; Xie, Z.; Gao, D.; Zhang, G. Cobalt single atoms immobilized N-Doped carbon nanotubes for enhanced bifunctional catalysis toward oxygen reduction and oxygen evolution reactions. ACS Appl. Energy Mater. 2018, 1, 3283–3291. [Google Scholar] [CrossRef]
- Ratso, S.; Kruusenberg, I.; Joost, U.; Saar, R.; Tammeveski, K. Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. Int. J. Hydrogen Energy 2016, 41, 22510–22519. [Google Scholar] [CrossRef]
- Ratso, S.; Kruusenberg, I.; Vikkisk, M.; Joost, U.; Shulga, E.; Kink, I.; Kallio, T.; Tammeveski, K. Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon 2014, 73, 361–370. [Google Scholar] [CrossRef]
- Su, X.; Wang, R.; Li, X.; Araby, S.; Kuan, H.-C.; Naeem, M.; Ma, J. A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Mater. Sci. 2022, 4, 185–204. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Zhu, Y.; Cai, Q.; Vasileff, A.; Li, L.H.; Han, Y.; Chen, Y.; Qiao, S.-Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336–3339. [Google Scholar] [CrossRef]
- Naqvi, S.T.R.; Rasheed, T.; Hussain, D.; Najam ul Haq, M.; Majeed, S.; Shafi, S.; Ahmed, N.; Nawaz, R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J. Mol. Liq. 2020, 297, 111919. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, T.; Kim, Y.S.; Choi, H.S.; Lim, H.J.; Yang, S.J.; Park, C.R. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 2012, 50, 3–33. [Google Scholar] [CrossRef]
- Li, P.; Jin, Z.; Fang, Z.; Yu, G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531. [Google Scholar] [CrossRef]
- Zhao, X.; Jia, X.; He, Y.; Zhang, H.; Zhou, X.; Zhang, H.; Zhang, S.; Dong, Y.; Hu, X.; Kuklin, A.V.; et al. Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia. Appl. Mater. Today 2021, 25, 101206. [Google Scholar] [CrossRef]
- Yang, X.; Li, K.; Cheng, D.; Pang, W.-L.; Lv, J.; Chen, X.; Zang, H.-Y.; Wu, X.-L.; Tan, H.-Q.; Wang, Y.-H.; et al. Nitrogen-doped porous carbon: Highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. J. Mater. Chem. A 2018, 6, 7762–7769. [Google Scholar] [CrossRef]
- Ni, B.; Chen, R.; Wu, L.; Xu, X.; Shi, C.; Sun, P.; Chen, T. Optimized enhancement effect of sulfur in Fe–N–S Codoped Carbon Nanosheets for Efficient Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2020, 12, 23995–24006. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, H.; Zhang, L.; Xiong, Y.; Ouyang, T.; Liu, Z.-Q. Hetero-anionic structure activated Co–S bonds promote oxygen electrocatalytic activity for high-efficiency zinc–air batteries. Adv. Mater. 2023, 35, 2303488. [Google Scholar] [CrossRef]
- Guan, L.; Suenaga, K.; Shi, Z.; Gu, Z.; Iijima, S. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett. 2007, 7, 1532–1535. [Google Scholar] [CrossRef]
- Medeiros, P.V.C.; Marks, S.; Wynn, J.M.; Vasylenko, A.; Ramasse, Q.M.; Quigley, D.; Sloan, J.; Morris, A.J. Single-atom scale structural selectivity in te nanowires encapsulated inside ultranarrow, single-walled carbon nanotubes. ACS Nano 2017, 11, 6178–6185. [Google Scholar] [CrossRef]
- Vasylenko, A.; Marks, S.; Wynn, J.M.; Medeiros, P.V.C.; Ramasse, Q.M.; Morris, A.J.; Sloan, J.; Quigley, D. Electronic structure control of Sub-nanometer 1d SnTe via Nanostructuring within Single-Walled Carbon Nanotubes. ACS Nano 2018, 12, 6023–6031. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, H.; Zhang, X.; Zhang, Q.; Chen, Y.; Yu, R.; Moskovits, M. Coupling of ultrasmall and small CoxP nanoparticles confined in porous SiO2 matrix for a robust oxygen evolution reaction. Nano Mater. Sci. 2022, 4, 393–399. [Google Scholar] [CrossRef]
- Wan, X.; Du, H.; Tuo, D.; Qi, X.; Wang, T.; Wu, J.; Li, G. Uio-66/carboxylated multiwalled carbon nanotube composites for highly efficient and stable voltammetric sensors for gatifloxacin. ACS Appl. Nano Mater. 2023, 6, 19403–19413. [Google Scholar] [CrossRef]
- Jia, R.; Wang, Y.; Wang, C.; Ling, Y.; Yu, Y.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540. [Google Scholar] [CrossRef]
- Zhao, D.; Ma, C.; Li, J.; Li, R.; Fan, X.; Zhang, L.; Dong, K.; Luo, Y.; Zheng, D.; Sun, S.; et al. Direct eight-electron NO3−-to-NH3 conversion: Using a Co-doped TiO2 nanoribbon array as a high-efficiency electrocatalyst. Inorg. Chem. Front. 2022, 9, 6412–6417. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Z.-W.; Gu, K.; Chen, C.; Liu, Y.; Wei, X.; Singh, C.V.; Wang, S. Hexagonal cobalt nanosheets for high-performance electrocatalytic no reduction to NH3. J. Am. Chem. Soc. 2023, 145, 6899–6904. [Google Scholar] [CrossRef]
- Li, L.; Wang, Q.; Zhang, X.; Fang, L.; Li, X.; Zhang, W. Unique three-dimensional Co3O4@CNFs derived from zifs and bacterial cellulose as advanced anode for sodium-ion batteries. Appl. Surf. Sci. 2020, 508, 145295. [Google Scholar] [CrossRef]
- Yao, F.; Xia, M.; Zhang, Q.; Wu, Q.; Terasaki, O.; Gao, J.; Jin, C. Confinement effect induced conformation change of one-dimensional phosphorus chains filled in carbon nanotubes. Carbon 2022, 189, 467–473. [Google Scholar] [CrossRef]
- Gao, T.; Zhou, C.; Zhang, Y.; Jin, Z.; Yuan, H.; Xiao, D. Ultra-fast pyrolysis of ferrocene to form Fe/C heterostructures as robust oxygen evolution electrocatalysts. J. Mater. Chem. A 2018, 6, 21577–21584. [Google Scholar] [CrossRef]
- Gao, T.; Jin, Z.; Liao, M.; Xiao, J.; Yuan, H.; Xiao, D. A trimetallic V–Co–Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 17763–17770. [Google Scholar] [CrossRef]
- Yoon, Y.; Yan, B.; Surendranath, Y. Suppressing ion transfer enables versatile measurements of electrochemical surface area for intrinsic activity comparisons. J. Am. Chem. Soc. 2018, 140, 2397–2400. [Google Scholar] [CrossRef]
- Patil, S.A.; Khot, A.C.; Chavan, V.D.; Rabani, I.; Kim, D.-K.; Jung, J.; Im, H.; Shrestha, N.K. Electrostatically robust CoFeOF nanosheet against chloride for green-H2 production in alkaline seawater electrolysis. Chem. Eng. J. 2023, in press. [CrossRef]
- Zhang, H.; Liu, Y.; Chen, T.; Zhang, J.; Zhang, J.; Lou, X.W. Unveiling the Activity Origin of Electrocatalytic Oxygen Evolution over Isolated Ni Atoms Supported on a N-Doped Carbon Matrix. Adv. Mater. 2019, 31, 1904548. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Ma, C.; Fan, X.; Li, Z.; Luo, Y.; Sun, S.; Zheng, D.; Liu, Q.; Du, J.; Lu, Q.; et al. Construction of CoP/TiO2 nanoarray for enhanced electrochemical nitrate reduction to ammonia. Mater. Today Phys. 2022, 28, 100854. [Google Scholar] [CrossRef]
- Niu, Z.; Fan, S.; Li, X.; Yang, J.; Wang, J.; Tao, Y.; Chen, G. Tailored electronic structure by sulfur filling oxygen vacancies boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Chem. Eng. J. 2023, 451, 138890. [Google Scholar] [CrossRef]
- Zhao, F.; Hai, G.; Li, X.; Jiang, Z.; Wang, H. Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation. Chem. Eng. J. 2023, 461, 141960. [Google Scholar] [CrossRef]
- Liu, P.; Yan, J.; Huang, H.; Song, W. Cu/Co bimetallic conductive mofs: Electronic modulation for enhanced nitrate reduction to ammonia. Chem. Eng. J. 2023, 466, 143134. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, D.; Liu, C.; Liang, Y.; Zheng, D.; Sun, S.; Li, Q.; Liu, Q.; Luo, Y.; Liao, Y.; et al. Amorphous CoB nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia. Inorg. Chem. Front. 2022, 9, 6075–6079. [Google Scholar] [CrossRef]
- Zhong, L.; Chen, Q.; Yin, H.; Chen, J.S.; Dong, K.; Sun, S.; Liu, J.; Xian, H.; Li, T. Co3O4 nanoparticles embedded in porous carbon nanofibers enable efficient nitrate reduction to ammonia. Chem. Commun. 2023, 59, 8973–8976. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.; Jiang, X.; Zhang, Y.; Liu, Y.; Liu, Y.; Zhao, L. Enhanced Electrocatalytic Nitrate Reduction to Ammonia Using Functionalized Multi-Walled Carbon Nanotube-Supported Cobalt Catalyst. Nanomaterials 2024, 14, 102. https://doi.org/10.3390/nano14010102
Ye M, Jiang X, Zhang Y, Liu Y, Liu Y, Zhao L. Enhanced Electrocatalytic Nitrate Reduction to Ammonia Using Functionalized Multi-Walled Carbon Nanotube-Supported Cobalt Catalyst. Nanomaterials. 2024; 14(1):102. https://doi.org/10.3390/nano14010102
Chicago/Turabian StyleYe, Minghao, Xiaoli Jiang, Yagang Zhang, Yang Liu, Yanxia Liu, and Lin Zhao. 2024. "Enhanced Electrocatalytic Nitrate Reduction to Ammonia Using Functionalized Multi-Walled Carbon Nanotube-Supported Cobalt Catalyst" Nanomaterials 14, no. 1: 102. https://doi.org/10.3390/nano14010102
APA StyleYe, M., Jiang, X., Zhang, Y., Liu, Y., Liu, Y., & Zhao, L. (2024). Enhanced Electrocatalytic Nitrate Reduction to Ammonia Using Functionalized Multi-Walled Carbon Nanotube-Supported Cobalt Catalyst. Nanomaterials, 14(1), 102. https://doi.org/10.3390/nano14010102