Catalytic Sabatier Process under Thermally and Magnetically Induced Heating: A Comparative Case Study for Titania-Supported Nickel Catalyst
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Ni/TiO2 Catalyst
2.3. Characterization
2.4. Catalytic Test
3. Results and Discussion
3.1. Catalyst Characterization
3.2. Catalytic Performances
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindsey, R.; Dlugokencky, E. Climate Change: Atmospheric Carbon Dioxide|NOAA Climate.Gov. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (accessed on 15 March 2023).
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the Valorization of Exhaust Carbon: From CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar] [CrossRef] [PubMed]
- Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.C. Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis. ACS Energy Lett. 2018, 3, 1557–1561. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, C.-J.; Oh, H.-S.; Min, B.K.; Lee, U. Review of carbon dioxide utilization technologies and their potential for industrial application. J. CO2 Util. 2022, 65, 102239. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, C.; Gao, P.; Wang, H.; Li, X.; Zhong, L.; Weiab, W.; Su, Y. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 2017, 7, 4580–4598. [Google Scholar] [CrossRef]
- Akpasi, S.O.; Isa, Y.M. Review of Carbon Capture and Methane Production from Carbon Dioxide. Atmosphere 2022, 13, 1958. [Google Scholar] [CrossRef]
- Younas, M.; Kong, L.L.; Bashir, M.J.K.; Nadeem, H.; Shehzad, A.; Sethupathi, S. Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2. Energy Fuels 2016, 30, 8815–8831. [Google Scholar] [CrossRef]
- Vogt, C.; Monai, M.; Kramer, G.J.; Weckhuysen, B.M. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2019, 2, 188–197. [Google Scholar] [CrossRef]
- Su, X.; Xu, J.; Liang, B.; Duan, H.; Hou, B.; Huang, Y. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies. J. Energy Chem. 2016, 25, 553–565. [Google Scholar] [CrossRef]
- Bailera, M.; Lisbona, P.; Romeo, L.M.; Espatolero, S. Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2. Renew. Sustain. Energy Rev. 2017, 69, 292–312. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, F.; Rodríguez-Antón, L.M. Power-to-SNG technology for energy storage at large scales. Int. J. Hydrogen Energy 2016, 41, 19290–19303. [Google Scholar] [CrossRef]
- Collet, P.; Flottes, E.; Favre, A.; Raynal, L.; Pierre, H.; Capela, S.; Peregrina, C. Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. Appl. Energy 2017, 192, 282–295. [Google Scholar] [CrossRef]
- Götz, M.; Lefebvre, J.; Mörs, F.; Koch, A.M.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef]
- Frontera, P.; Macario, A.; Ferraro, M.; Antonucci, P.L. Supported Catalysts for CO2 Methanation: A Review. Catalysts 2017, 7, 59. [Google Scholar] [CrossRef]
- Aziz, M.A.A.; Jalil, A.A.; Triwahyono, S.; Ahmad, A. CO2 methanation over heterogeneous catalysts: Recent progress and future prospects. Green Chem. 2015, 17, 2647–2663. [Google Scholar] [CrossRef]
- Moioli, E.; Züttel, A. A model-based comparison of Ru and Ni catalysts for the Sabatier reaction. Sustain. Energy Fuels 2020, 4, 1396–1408. [Google Scholar] [CrossRef]
- Eigenberger, G.; Ruppel, W. Catalytic fixed-bed reactors. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Wang, W.; Tuci, G.; Duong-Viet, C.; Liu, Y.; Rossin, A.; Luconi, L.; Nhut, J.-M.; Nguyen-Dinh, L.; Pham-Huu, C.; Giambastiani, G. Induction Heating: An Enabling Technology for the Heat Management in Catalytic Processes. ACS Catal. 2019, 9, 7921–7935. [Google Scholar] [CrossRef]
- Fache, A.; Marias, F.; Chaudret, B. Catalytic reactors for highly exothermic reactions: Steady state stability enhancement by magnetic induction. Chem. Eng. J. 2020, 390, 124531. [Google Scholar] [CrossRef]
- Mortensen, P.M.; Engbæk, J.S.; Vendelbo, S.B.; Hansen, M.F.; Østberg, M. Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst. Ind. Eng. Chem. Res. 2017, 56, 14006–14013. [Google Scholar] [CrossRef]
- Wang, W.; Duong-Viet, C.; Xu, Z.; Ba, H.; Tuci, G.; Giambastiani, G.; Liu, Y.; Truong-Huu, T.; Nhut, J.-M.; Pham-Huu, C. CO2 Methanation Under Dynamic Operational Mode Using Nickel Nanoparticles Decorated Carbon Felt (Ni/OCF) Combined with Inductive Heating. Catal. Today 2020, 357, 214–220. [Google Scholar] [CrossRef]
- Niether, C.; Faure, S.; Bordet, A.; Deseure, J.; Chatenet, M.; Carrey, J.; Chaudret, B.; Rouet, A. Improved Water Electrolysis Using Magnetic Heating of FeC−Ni Core−Shell Nanoparticles. Nat. Energy 2018, 3, 476–483. [Google Scholar] [CrossRef]
- Bordet, A.; Lacroix, L.-M.; Fazzini, P.-F.; Carrey, J.; Soulantica, K.; Chaudret, B. Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. Angew. Chem. Int. Ed. 2016, 55, 15894–15898. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ourlin, T.; Fazzini, P.-F.; Lacroix, L.-M.; Tricard, S.; Esvan, J.; Cayez, S.; Chaudret, B. Magnetically Induced CO2 Methanation In Continuous Flow Over Supported Nickel Catalysts with Improved Energy Efficiency. ChemSusChem 2023, 16, e202201724. [Google Scholar] [CrossRef] [PubMed]
- Faure, S.; Kale, S.S.; Mille, N.; Cayez, S.; Ourlin, T.; Soulantica, K.; Carrey, J.; Chaudret, B. Improving energy efficiency of magnetic CO2 methanation by modifying coil design, heating agents, and by using eddy currents as the complementary heating source. J. Appl. Phys. 2021, 129, 044901. [Google Scholar] [CrossRef]
- De Masi, D.; Asensio, J.M.; Fazzini, P.-F.; Lacroix, L.-M.; Chaudret, B. Engineering Iron–Nickel Nanoparticles for Magnetically Induced CO2 Methanation in Continuous Flow. Angew. Chem. Int. Ed. 2020, 59, 6187–6191. [Google Scholar] [CrossRef]
- Kale, S.S.; Asensio, J.M.; Estrader, M.; Werner, M.; Bordet, A.; Yi, D.; Marbaix, J.; Fazzini, P.-F.; Soulantica, K.; Chaudret, B. Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts. Catal. Sci. Technol. 2019, 9, 2601–2607. [Google Scholar] [CrossRef]
- Rivas-Murias, B.; Asensio, J.M.; Mille, N.; Rodríguez-González, B.; Fazzini, P.-F.; Carrey, J.; Chaudret, B.; Salgueiriño, V. Magnetically Induced CO2 Methanation Using Exchange-Coupled Spinel Ferrites in Cuboctahedron-Shaped Nanocrystals. Angew. Chem. Int. Ed. 2020, 132, 15667–15672. [Google Scholar] [CrossRef]
- Marbaix, J.; Mille, N.; Lacroix, L.-M.; Asensio, J.M.; Fazzini, J.M.; Soulantica, K.; Carrey, J.; Chaudret, B. Tuning the Composition of FeCo Nanoparticle Heating Agents for Magnetically Induced Catalysis. ACS Appl. Nano Mater. 2020, 3, 3767–3778. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Marbaix, J.; Asensio, J.M.; Cerezo-Navarrete, C.; Fazzini, P.-F.; Soulantica, K.; Chaudret, B.; Corma, A. Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS Appl. Nano Mater. 2020, 3, 7076–7087. [Google Scholar] [CrossRef]
- Meffre, A.; Mehdaoui, B.; Connord, V.; Carrey, J.; Fazzini, P.F.; Lachaize, S.; Respaud, M.; Chaudret, B. Complex Nano-objects Displaying both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Lett. 2015, 15, 3241–3248. [Google Scholar] [CrossRef]
- Marin, I.M.; De Masi, D.; Lacroix, L.-M.; Fazzini, P.-F.; van Leeuwen, P.W.N.M.; Asensio, J.M.; Chaudret, B. Hydrodeoxygenation and hydrogenolysis of biomass-based materials using FeNi catalysts and magnetic induction. Green Chem. 2021, 23, 2025–2036. [Google Scholar] [CrossRef]
- Raya-Bayon, A.; Mazario, J.; Mencia, G.; Fazzini, P.-F.; Chaudret, B. L-Lysine Stabilized FeNi Nanoparticles for the Catalytic Reduction of Biomass-derived Substrates in Water Using Magnetic Induction. ChemSusChem 2023, 16, e202300009. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Gao, J.; Wang, Y.; Ping, Y.; Hu, D.; Xu, G.; Gu, F.; Su, F. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2012, 2, 2358–2368. [Google Scholar] [CrossRef]
- Díaz-Puerto, J.; Raya-Barón, A.; van Leeuwen, P.W.N.M.; Asensio, J.M.; Chaudret, B. Determination of the surface temperature of magnetically heated nanoparticles using a catalytic approach. Nanoscale 2021, 13, 12438–12442. [Google Scholar] [CrossRef]
- Wang, W.; Duong-Viet, C.; Tuci, G.; Liu, Y.; Rossin, A.; Luconi, L.; Nhut, J.M.; Nguyen-Dinh, L.; Giambastiani, G.; Pham-Huu, C. Highly Nickel-Loaded γ-Alumina Composites for a Radiofrequency-Heated, Low-Temperature CO2 Methanation Scheme. ChemSusChem 2020, 13, 5468–5479. [Google Scholar] [CrossRef]
- Truong-Phuoc, L.; Duong-Viet, C.; Tuci, G.; Rossin, A.; Nhut, J.-M.; Baaziz, W.; Ersen, O.; Arab, M.; Jourdan, A.; Giambastiani, G.; et al. Graphite Felt-Sandwiched Ni/SiC Catalysts for the Induction Versus Joule-Heated Sabatier Reaction: Assessing the Catalyst Temperature at the Nanoscale. ACS Sustain. Chem. Eng. 2022, 10, 622–632. [Google Scholar] [CrossRef]
- Hartman, T.; Geitenbeek, R.G.; Whiting, G.T.; Weckhuysen, B.M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2019, 2, 986–996. [Google Scholar] [CrossRef]
- Wang, W.; Duong-Viet, C.; Truong-Phuoc, L.; Nhut, J.-M.; Vidal, L.; Pham-Huu, C. Activated Carbon Supported Nickel Catalyst for Selective CO2 Hydrogenation to Synthetic Methane Under Contactless Induction Heating. Catal. Today 2023, 418, 114073. [Google Scholar] [CrossRef]
- Ince, A.C.; Colpan, C.O.; Hagen, A.; Serincan, M.F. Modeling and simulation of Power-to-X systems: A review. Fuel 2021, 304, 121354. [Google Scholar] [CrossRef]
- Chou, C.-Y.; Loiland, J.A.; Lobo, R.F. Reverse Water-Gas Shift Iron Catalyst Derived from Magnetite. Catalysts 2019, 9, 773. [Google Scholar] [CrossRef]
- Loiland, J.A.; Wulfers, M.J.; Marinkovic, N.S.; Lobo, R.F. Fe/γ-Al2O3 and Fe–K/γ-Al2O3 as reverse water-gas shift catalysts. Catal. Sci. Technol. 2016, 6, 5267–5279. [Google Scholar] [CrossRef]
Reaction Composition | Wt. of Catalyst (mg) | H2 Pre-Treatment | Use of SiC |
---|---|---|---|
5Ni/TiO2 150 mg | 150 | No | No |
5Ni/TiO2 300 mg | 300 | No | No |
5Ni/TiO2 300 mg + H2 | 300 | Yes | No |
5Ni/TiO2 300 mg + SiC + H2 | 300 | Yes | Yes |
Catalyst | % CO2 Conversion (Temperature/°C) | % CH4 Yield | % CO Yield |
---|---|---|---|
150 mg (thermal) | 64.2 (380 °C) | 63.4 | 0.78 |
300 mg (thermal) | 60.5 (380 °C) | 60.3 | 0.33 |
300 mg + H2·(thermal) | 73.4 (380 °C) | 72.8 | 0.54 |
300 mg + H2 + SiC (thermal) | 77.9 (380 °C) | 77.5 | 0.25 |
300 mg (magnetic) | 63 (334 °C) | 62.9 | 0.13 |
300 mg + H2 + SiC (magnetic) | 86 (334 °C) | 85.7 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Gupta, S.; Gregoire, M.; Ourlin, T.; Fazzini, P.-F.; Abi-Aad, E.; Poupin, C.; Chaudret, B. Catalytic Sabatier Process under Thermally and Magnetically Induced Heating: A Comparative Case Study for Titania-Supported Nickel Catalyst. Nanomaterials 2023, 13, 1474. https://doi.org/10.3390/nano13091474
Ghosh S, Gupta S, Gregoire M, Ourlin T, Fazzini P-F, Abi-Aad E, Poupin C, Chaudret B. Catalytic Sabatier Process under Thermally and Magnetically Induced Heating: A Comparative Case Study for Titania-Supported Nickel Catalyst. Nanomaterials. 2023; 13(9):1474. https://doi.org/10.3390/nano13091474
Chicago/Turabian StyleGhosh, Sourav, Sharad Gupta, Manon Gregoire, Thibault Ourlin, Pier-Francesco Fazzini, Edmond Abi-Aad, Christophe Poupin, and Bruno Chaudret. 2023. "Catalytic Sabatier Process under Thermally and Magnetically Induced Heating: A Comparative Case Study for Titania-Supported Nickel Catalyst" Nanomaterials 13, no. 9: 1474. https://doi.org/10.3390/nano13091474
APA StyleGhosh, S., Gupta, S., Gregoire, M., Ourlin, T., Fazzini, P.-F., Abi-Aad, E., Poupin, C., & Chaudret, B. (2023). Catalytic Sabatier Process under Thermally and Magnetically Induced Heating: A Comparative Case Study for Titania-Supported Nickel Catalyst. Nanomaterials, 13(9), 1474. https://doi.org/10.3390/nano13091474