Enhanced Spectral Response of ZnO-Nanorod-Array-Based Ultraviolet Photodetectors by Alloying Non-Isovalent Cu–O with CuAlO2 P-Type Layer
Abstract
:1. Introduction
2. Experimental Section
2.1. Fabrication of ZnO/CuAlO2 Heterojunction
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Liu, K.; Hu, L.; Al-Ghamdi, A.A.; Fang, X. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Zhang, Z.; Hu, K.; Fang, X. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Guo, Z.; Zhou, L.; Fang, X.; Zhang, L.; Zeng, L.; Xie, L.; Zhao, H. One-Dimensional zinc oxide nanomaterials for application in high-performance advanced optoelectronic devices. Crystals 2018, 8, 223. [Google Scholar] [CrossRef]
- Docampo, P.; Ivaturi, A.; Gunning, R.; Diefenbach, S.; Kirkpatrick, J.; Palumbiny, C.M.; Sivaram, V.; Geaney, H.; Schmidt-Mende, L.; Welland, M.E.; et al. The influence of 1D, meso-and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 12088. [Google Scholar] [CrossRef]
- Zhai, T.; Li, L.; Wang, X.; Fang, X.; Bando, Y.; Golberg, D. Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater. 2010, 20, 4233–4248. [Google Scholar] [CrossRef]
- Zheng, H.; Jiang, Y.; Yang, S.; Zhang, Y.; Yan, X.; Hu, J.; Shi, Y.; Zou, B. ZnO nanorods array as light absorption antenna for high-gain UV photodetectors. J. Alloys Compd. 2020, 812, 152158. [Google Scholar] [CrossRef]
- Liu, K.; Sakurai, M.; Aono, M. ZnO-based ultraviolet photodetectors. Sensors 2010, 10, 8604–8634. [Google Scholar] [CrossRef]
- Liu, K.; Sakurai, M.; Liao, M.; Aono, M. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J. Phys. Chem. C 2010, 114, 19835–19839. [Google Scholar] [CrossRef]
- Cao, B.Q.; Lorenz, M.; Rahm, A.; von Wenckstern, H.; Czekalla, C.; Lenzner, J.; Benndorf, G.; Grundmann, M. Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition. Nanotechnology 2007, 18, 455707. [Google Scholar] [CrossRef]
- Heo, Y.W.; Varadarajan, V.; Kaufman, M.; Kim, K.; Norton, D.P.; Ren, F.; Fleming, P.H. Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 2002, 81, 3046–3048. [Google Scholar] [CrossRef]
- Dhar, S.; Majumder, T.; Chakraborty, P.; Mondal, S.P. DMSO modified PEDOT:PSS polymer/ZnO nanorods Schottky junction ultraviolet photodetector: Photoresponse, external quantum efficiency, detectivity, and responsivity augmentation using N doped graphene quantum dots. Org. Electron. 2018, 53, 101–110. [Google Scholar] [CrossRef]
- Echresh, A.; Chey, C.O.; Zargar Shoushtari, M.; Khranovskyy, V.; Nur, O.; Willander, M. UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J. Alloys Compd. 2015, 632, 165–171. [Google Scholar] [CrossRef]
- Tu, Y.-C.; Wang, S.-J.; Lin, T.-H.; Hung, C.-H.; Tsai, T.-C.; Wu, R.-W.; Uang, K.-M.; Chen, T.-M. Hydrothermal growth of quasi-monocrystal ZnO thin films and their application in ultraviolet photodetectors. Int. J. Photoenergy 2015, 2015, 261372. [Google Scholar] [CrossRef]
- Lee, B.R.; Jung, E.D.; Park, J.S.; Nam, Y.S.; Min, S.H.; Kim, B.S.; Lee, K.M.; Jeong, J.R.; Friend, R.H.; Kim, J.S.; et al. Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Nat. Commun. 2014, 5, 4840. [Google Scholar] [CrossRef]
- Mirkhani, V.; Yapabandara, K.; Wang, S.; Khanal, M.P.; Uprety, S.; Sultan, M.S.; Ozden, B.; Ahyi, A.C.; Hamilton, M.C.; Sk, M.H.; et al. On the anomaly in the electrical characteristics of thin film transistors with multi-layered sol-gel processed ZnO. Thin Solid Films 2019, 672, 152–156. [Google Scholar] [CrossRef]
- Wang, H.; Zou, C.; Tian, C.; Zhou, L.; Wang, Z.; Fu, D. A novel gas ionization sensor using Pd nanoparticle-capped ZnO. Nanoscale Res. Lett. 2011, 6, 534. [Google Scholar] [CrossRef]
- Xie, Y.; Li, H.; Zhang, D.; Zhang, L. High-performance quasi-solid-state photoelectrochemical-type ultraviolet photodetector based on ZnO nanowire arrays. Vacuum 2019, 164, 58–61. [Google Scholar] [CrossRef]
- Dhar, S.; Majumder, T.; Mondal, S.P. Phenomenal improvement of external quantum efficiency, detectivity and responsivity of nitrogen doped graphene quantum dot decorated zinc oxide nanorod/polymer schottky junction UV detector. Mater. Res. Bull. 2017, 95, 198–203. [Google Scholar] [CrossRef]
- Shen, Y.; Yan, X.; Bai, Z.; Zheng, X.; Sun, Y.; Liu, Y.; Lin, P.; Chen, X.; Zhang, Y. A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction. RSC Adv. 2015, 5, 5976–5981. [Google Scholar] [CrossRef]
- Park, C.H.; Zhang, S.B.; Wei, S.-H. Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys. Rev. B 2002, 66, 073202. [Google Scholar] [CrossRef]
- Hatch, S.M.; Briscoe, J.; Dunn, S. A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater. 2013, 25, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.-M.; He, D.-C.; Yao, Z.-C.; Peng, J.-L.; Zhao, H.-Y.; Tao, H.; Chen, Z.; Tu, Y.-F.; Tian, Y.; Zhou, D.; et al. Self-powered ultraviolet photodetector based on ZnO nanorod arrays decorated with sea anemone-like CuO nanostructures. Mater. Lett. 2018, 222, 74–77. [Google Scholar] [CrossRef]
- Kawazoe, H.; Yasukawa, M.; Hyodo, H.; Kurita, M.; Yanagi, H.; Hosono, H. P-type electrical conduction in transparent thin films of CuAlO2. Nature 1997, 389, 939–942. [Google Scholar] [CrossRef]
- Wang, Z.; Nayak, P.K.; Caraveo-Frescas, J.A.; Alshareef, H.N. Recent developments in p-type oxide semiconductor materials and devices. Adv. Mater. 2016, 28, 3831–3892. [Google Scholar] [CrossRef] [PubMed]
- Yanagi, H.; Kawazoe, H.; Kudo, A.; Yasukawa, M.; Hosono, H. Chemical design and thin film preparation of p-type conductive transparent oxides. J. Electroceram. 2000, 4, 407–414. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, J.; Gong, H. Transparent p-type semiconductors: Copper-based oxides and oxychalcogenides. Coatings 2019, 9, 137. [Google Scholar] [CrossRef]
- Lan, W.; Cao, W.L.; Zhang, M.; Liu, X.Q.; Wang, Y.Y.; Xie, E.Q.; Yan, H. Annealing effect on the structural, optical, and electrical properties of CuAlO2 films deposited by magnetron sputtering. J. Mater. Sci. 2009, 44, 1594–1599. [Google Scholar] [CrossRef]
- Xiong, D.; Zeng, X.; Zhang, W.; Wang, H.; Zhao, X.; Chen, W.; Cheng, Y.-B. Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods. Inorg. Chem. 2014, 53, 4106–4116. [Google Scholar] [CrossRef]
- Ding, J.; Tian, L.; Zhang, Q.; Wen, Y.; Cheng, Y.; Mu, Y.; Han, D.D.; Zhang, C. Improvement of heterojunction nanomaterials photoelectrochemical properties by sol-gel synthesis and hydrothermal reaction. J. Nanosci. Nanotechnol. 2018, 18, 7011–7017. [Google Scholar] [CrossRef]
- Yao, Z.Q.; He, B.; Zhang, L.; Zhuang, C.Q.; Ng, T.W.; Liu, S.L.; Vogel, M.; Kumar, A.; Zhang, W.J.; Lee, C.S.; et al. Energy band engineering and controlled p-type conductivity of CuAlO2 thin films by nonisovalent Cu-O alloying. Appl. Phys. Lett. 2012, 100, 062102. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, X.; Zang, X.; Wu, W.; Sun, S.; Xiong, C.; Yin, W.; Gui, C.; Zhu, X. Electronic properties of bivalent cations (Be, Mg and Ca) substitution for Al in delafossite CuAlO2 semiconductor by first-principles calculations. J. Alloys Compd. 2013, 553, 245–252. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, M.; Li, T.; Yan, H. Co-doping effect of ca and n on the structure and properties of CuAlO2 thin film. J. Electrochem. Soc. 2010, 157, H127–H130. [Google Scholar] [CrossRef]
- Pantian, S.; Sakdanuphab, R.; Sakulkalavek, A. Enhancing the electrical conductivity and thermoelectric figure of merit of the p-type delafossite CuAlO2 by Ag2O addition. Curr. Appl. Phys. 2017, 17, 1264–1270. [Google Scholar] [CrossRef]
- Dong, G.; Zhang, M.; Lan, W.; Dong, P.; Yan, H. Structural and physical properties of Mg-doped CuAlO2 thin films. Vacuum 2008, 82, 1321–1324. [Google Scholar] [CrossRef]
- Hu, W.; Liu, W. CuAlO2/Bi2WO6: A novel p–n type composite with significantly enhanced visible-light photocatalytic reduction of Cr(VI). Mater. Res. Express 2021, 8, 065901. [Google Scholar] [CrossRef]
- Song, Y.; Yao, B.; Li, Y.; Ding, Z.; Liu, R.; Sui, Y.; Zhang, L.; Zhang, Z.; Zhao, H. Improving the back electrode interface quality of Cu2ZnSn(S,Se)4 thin-film solar cells using a novel CuAlO2 buffer layer. ACS Appl. Energy Mater. 2019, 2, 2230–2237. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Zhang, P.; Sun, X.; Zheng, H.; Zhang, W. Preparation and characterization of solution-processed nanocrystalline p-type CuAlO2 thin-film transistors. Nanoscale Res. Lett. 2018, 13, 259. [Google Scholar] [CrossRef] [PubMed]
- Prévot, M.S.; Li, Y.; Guijarro, N.; Sivula, K. Improving charge collection with delafossite photocathodes: A host–guest CuAlO2/CuFeO2 approach. J. Mater. Chem. A 2016, 4, 3018–3026. [Google Scholar] [CrossRef]
- Savva, A.; Papadas, I.T.; Tsikritzis, D.; Ioakeimidis, A.; Galatopoulos, F.; Kapnisis, K.; Fuhrer, R.; Hartmeier, B.; Oszajca, M.F.; Luechinger, N.A.; et al. Inverted perovskite photovoltaics using flame spray pyrolysis solution based CuAlO2/Cu-O hole-selective contact. ACS Appl. Energy Mater. 2019, 2, 2276–2287. [Google Scholar] [CrossRef]
- Luo, J.; Lin, Y.-J.; Hung, H.-C.; Liu, C.-J.; Yang, Y.-W. Tuning the formation of p-type defects by peroxidation of CuAlO2 films. J. Appl. Phys. 2013, 114, 033712. [Google Scholar]
- Ismail, R.A.; Rashid, F.F.; Tariq, M.S. Preparation and characteristics study of CuAlO2/Si heterojunction photodetector by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 2017, 28, 6889–6896. [Google Scholar] [CrossRef]
- Shan, C.; Zhao, M.; Jiang, D.; Li, Q.; Li, M.; Zhou, X.; Duan, Y.; Wang, N.; Deng, R. Improved responsivity performance of ZnO film ultraviolet photodetectors by vertical arrays ZnO nanowires with light trapping effect. Nanotechnology 2019, 30, 305703. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Feng, N.; Jin, Y.; Lu, Y. CuAlO2 thermoelectric compacts by SPS and thermoelectric performance improvement by orientation control. Ceram. Int. 2017, 43, 12154–12161. [Google Scholar] [CrossRef]
- Ghamgosar, P.; Rigoni, F.; You, S.; Dobryden, I.; Kohan, M.G.; Pellegrino, A.L.; Concina, I.; Almqvist, N.; Malandrino, G.; Vomiero, A. ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors. Nano Energy 2018, 51, 308–316. [Google Scholar] [CrossRef]
- Mariammal, R.N.; Ramachandran, K.; Kalaiselvan, G.; Arumugam, S.; Renganathan, B.; Sastikumar, D. Effect of magnetism on the ethanol sensitivity of undoped and Mn-doped CuO nanoflakes. Appl. Surf. Sci. 2013, 270, 545–552. [Google Scholar] [CrossRef]
- Smith, J.R.; Van Steenkiste, T.H.; Wang, X.-G. Thermal photocatalytic generation of H2 over CuAlO2 nanoparticle catalysts in H2O. Phys. Rev. B 2009, 79, 041403. [Google Scholar] [CrossRef]
- Cossuet, T.; Resende, J.; Rapenne, L.; Chaix-Pluchery, O.; Jiménez, C.; Renou, G.; Pearson, A.J.; Hoye, R.L.Z.; Blanc-Pelissier, D.; Nguyen, N.D.; et al. ZnO/CuCrO2 core–shell nanowire heterostructures for self-powered UV photodetectors with fast response. Adv. Funct. Mater. 2018, 28, 1803142. [Google Scholar] [CrossRef]
- Zou, Y.S.; Wang, H.P.; Zhang, S.L.; Lou, D.; Dong, Y.H.; Song, X.F.; Zeng, H.B. Structural, electrical and optical properties of Mg-doped CuAlO2 films by pulsed laser deposition. RSC Adv. 2014, 4, 41294–41300. [Google Scholar] [CrossRef]
- Liu, W. Nitrogen-doped CuAlO2 films prepared by chemical solution deposition. J. Phys. Conf. Ser. 2020, 1637, 012062. [Google Scholar] [CrossRef]
- Daichakomphu, N.; Sakdanuphab, R.; Harnwunggmoung, A.; Puarporn, Y.; Chanlek, N.; Sakulkalavek, A. Enhanced carrier concentration of Fe doped delafossite CuAlO2 by double-effect: Divalent metal ions doping and excess oxygen. Solid State Ionics 2018, 328, 17–24. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Y.; Mellott, N.P.; Wang, B.; Ye, H.; Wu, Y. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations. Sci. Technol. Adv. Mater. 2016, 17, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kong, W.; Qin, X.; Qu, F.; Lu, L. Self-powered cathodic photoelectrochemical aptasensor based on in situ-synthesized CuO-Cu2O nanowire array for detecting prostate-specific antigen. Mikrochim. Acta 2020, 187, 325. [Google Scholar] [CrossRef] [PubMed]
- Esgin, H.; Caglar, Y.; Caglar, M. Photovoltaic performance and physical characterization of Cu doped ZnO nanopowders as photoanode for DSSC. J. Alloys Compd. 2022, 890, 161848. [Google Scholar] [CrossRef]
- Fang, M.; He, H.; Lu, B.; Zhang, W.; Zhao, B.; Ye, Z.; Huang, J. Optical properties of p-type CuAlO2 thin film grown by rf magnetron sputtering. Appl. Surf. Sci. 2011, 257, 8330–8333. [Google Scholar] [CrossRef]
- Pandiyan, R.; Oulad Elhmaidi, Z.; Sekkat, Z.; Abd-lefdil, M.; El Khakani, M.A. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications. Appl. Surf. Sci. 2017, 396, 1562–1570. [Google Scholar] [CrossRef]
- Greiner, M.T.; Helander, M.G.; Tang, W.M.; Wang, Z.B.; Qiu, J.; Lu, Z.H. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 2011, 11, 76–81. [Google Scholar] [CrossRef]
- Gillen, R.; Robertson, J. Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange. Phys. Rev. B 2011, 84, 035125. [Google Scholar] [CrossRef]
- Teng, F.; Hu, K.; Ouyang, W.; Fang, X. Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 2018, 30, 1706262. [Google Scholar] [CrossRef]
- Tian, W.; Lu, H.; Li, L. Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Res. 2015, 8, 382–405. [Google Scholar] [CrossRef]
- Li, Q.H.; Gao, T.; Wang, Y.G.; Wang, T.H. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl. Phys. Lett. 2005, 86, 123117. [Google Scholar] [CrossRef]
- Retamal, J.R.D.; Chen, C.-Y.; Lien, D.-H.; Huang, M.R.S.; Lin, C.-A.; Liu, C.-P.; He, J.-H. Concurrent improvement in photogain and speed of a metal oxide nanowire photodetector through enhancing surface band bending via incorporating a nanoscale heterojunction. ACS Photonics 2014, 1, 354–359. [Google Scholar] [CrossRef]
- Flemban, T.H.; Haque, M.A.; Ajia, I.; Alwadai, N.; Mitra, S.; Wu, T.; Roqan, I.S. A Photodetector Based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity. ACS Appl. Mater. Interfaces 2017, 9, 37120–37127. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Sha, J.; Wang, Z.; Wan, Y.; Xia, W.; Wang, Y. Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays. Appl. Phys. Lett. 2011, 98, 033103. [Google Scholar] [CrossRef]
- Ling, B.; Sun, X.W.; Zhao, J.L.; Tan, S.T.; Dong, Z.L.; Yang, Y.; Yu, H.Y.; Qi, K.C. Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode. Phys. E 2009, 41, 635–639. [Google Scholar] [CrossRef]
- Luo, G.; Yang, X.; Long, Y.; Li, W.; Yang, Y.; Luo, S. Enhanced performance of self-powered ultraviolet photodetectors coupled with the photovoltaic-pyroelectric effect based on ZnO/CuBO2 core-shell nanorod arrays. J. Alloys Compd. 2022, 911, 165066. [Google Scholar] [CrossRef]
- Tan, B.; Luo, G.; Zhang, Z.; Jiang, J.; Guo, X.; Li, W.; Zhang, J.; Wang, W. Space-limited domain annealing of CuI thin films for highly responsive ZnO nanorods based ultraviolet photodetectors. Mater. Sci. Semicond. Process. 2021, 134, 106008. [Google Scholar] [CrossRef]
- Bo, L.; Xiaowei, S.; Junliang, Z. Fabrication and characterization of n-ZnO nanorod/p-CuAlO2 heterojunction. In Proceedings of the 2008 2nd IEEE International Nanoelectronics Conference, Shanghai, China, 24–27 March 2008; pp. 102–104. [Google Scholar]
- Yang, Z.; Wang, M.; Ding, J.; Sun, Z.; Li, L.; Huang, J.; Liu, J.; Shao, J. Semi-Transparent ZnO-CuI/CuSCN photodiode detector with narrow-band uv photoresponse. ACS Appl. Mater. Interfaces 2015, 7, 21235–21244. [Google Scholar] [CrossRef]
- Boruah, B.D.; Majji, S.N.; Misra, A. Surface photo-charge effect in doped-ZnO nanorods for high-performance self-powered ultraviolet photodetectors. Nanoscale 2017, 9, 4536–4543. [Google Scholar] [CrossRef]
- Zhou, H.; Gui, P.; Yang, L.; Ye, C.; Xue, M.; Mei, J.; Song, Z.; Wang, H. High performance, self-powered ultraviolet photodetector based on a ZnO nanoarrays/GaN structure with a CdS insert layer. New J. Chem. 2017, 41, 4901–4907. [Google Scholar] [CrossRef]
- Perng, D.-C.; Lin, H.-P.; Hong, M.-H. High-performance ultraviolet detection and visible-blind photodetector based on Cu2O/ZnO nanorods with poly-(N-vinylcarbazole) intermediate layer. Appl. Phys. Lett. 2015, 107, 241113. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Shi, S.; Zhang, Y.; Gao, Y.; Liu, Z.; Zhang, X.; Li, L. Optimizing performance of Cu2O/ZnO nanorods heterojunction based self-powered photodetector with ZnO seed layer. J. Phys. Chem. Solids 2017, 103, 218–223. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, J.; Wang, W.; Liu, X.; Gao, J.; Lu, Z. High-performance self-powered ultraviolet photodetector based on PEDOT:PSS/CuO/ZnO nanorod array sandwich structure. Appl. Surf. Sci. 2022, 599, 153956. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, Z.; Jiang, J.; Liu, Y.; Li, W.; Zhang, J.; Hao, X.; Wang, W. Enhanced performance of ZnO nanorod array/CuSCN ultraviolet photodetectors with functionalized graphene layers. RSC Adv. 2021, 11, 7682–7692. [Google Scholar] [CrossRef] [PubMed]
Heterostructure | Wavelength | Rectification Ratio | Responsivity (Bias Voltage) | Rise Time Decay Time | Detectivity (Jones) | Ref. |
---|---|---|---|---|---|---|
Cl-ZnO NRs/DMSO-PEDOT: PSS | 365 nm | - | 0.8 mA W−1 (0 V) | 0.03 s 0.032 ms | 1.12 × 1010 | [69] |
ZnO NRs/CdS/GaN | 300 nm | - | 176 mA W−1 (0 V) | <0.35 s | 2.5 × 1012 | [70] |
ZnO NRs/PVK/Cu2O | 360 nm | - | 13.28 A W−1 (−0.1 V) | 8.7 s 128.3 s | 1.03 × 1013 | [71] |
ZnO NR/CuSCN | 355 nm | 23 (±4 V) | 7.5 mA W−1 (0 V) | 500 ns 6.7 us | - | [21] |
ZnO NRs/Cu2O | 390–480 nm | 19.1 (±2 V) | 60–70 mA W−1 (0 V) | 75 ms 70 ms | - | [72] |
ZnO NRs/CuO | 365 nm | - | 0.272 mA W−1 (0 V) | 27 s 5 s | - | [22] |
ZnO NRs/CuO/PEDOT:PSS | 365 nm | - | 9.96 mA W−1 (0 V) | 33 ms 296 ms | - | [73] |
ZnO NRs/CuSCN/rGO | 375 nm | 5690 (±1 V) | 18.65 mA W−1 (−1 μV) | 105 ms 100 ms | 3.8 × 1011 | [74] |
ZnO NRs/CuI | 380 nm | 17.7 (±1 V) | 86.84 mA W−1 (0 V) | 110 ms 110 ms | [66] | |
ZnO NRs/CuAlO2 | 380 nm | 18 (±1 V) | 13.2 mA W−1 (0 V) | 1.97 s 2.81 s | 2.35 × 1010 | This work |
ZnO NRs/[CuAlO2/Cu–O] | 370 nm | 30 (±1 V) | 91.3 mA W−1 (0 V) | 0.67 s 3.49 s | 1.71 × 1011 | This work |
375 nm | - | 5.002 A W−1 (−1.5 V) | - | - | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Zhang, Z.; Yang, X.; Liu, Y.; Luo, G.; Zhang, J.; Li, W. Enhanced Spectral Response of ZnO-Nanorod-Array-Based Ultraviolet Photodetectors by Alloying Non-Isovalent Cu–O with CuAlO2 P-Type Layer. Nanomaterials 2023, 13, 1472. https://doi.org/10.3390/nano13091472
Long Y, Zhang Z, Yang X, Liu Y, Luo G, Zhang J, Li W. Enhanced Spectral Response of ZnO-Nanorod-Array-Based Ultraviolet Photodetectors by Alloying Non-Isovalent Cu–O with CuAlO2 P-Type Layer. Nanomaterials. 2023; 13(9):1472. https://doi.org/10.3390/nano13091472
Chicago/Turabian StyleLong, Yuchen, Ziling Zhang, Xiutao Yang, Yang Liu, Guangcan Luo, Jingquan Zhang, and Wei Li. 2023. "Enhanced Spectral Response of ZnO-Nanorod-Array-Based Ultraviolet Photodetectors by Alloying Non-Isovalent Cu–O with CuAlO2 P-Type Layer" Nanomaterials 13, no. 9: 1472. https://doi.org/10.3390/nano13091472
APA StyleLong, Y., Zhang, Z., Yang, X., Liu, Y., Luo, G., Zhang, J., & Li, W. (2023). Enhanced Spectral Response of ZnO-Nanorod-Array-Based Ultraviolet Photodetectors by Alloying Non-Isovalent Cu–O with CuAlO2 P-Type Layer. Nanomaterials, 13(9), 1472. https://doi.org/10.3390/nano13091472