Effect of Plasmonic Ag Nanoparticles on Emission Properties of Planar GaN Nanowires
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, M.S.; Lee, C.H.; Park, J.B.; Yoo, H.; Yi, G.C. Gallium nitride nanostructures for light-emitting diode applications. Nano Energy 2012, 1, 391–400. [Google Scholar] [CrossRef]
- Ebaid, M.; Kang, J.H.; Lim, S.H.; Ha, J.S.; Lee, J.K.; Cho, Y.H.; Ryua, S.W. Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires. Nano Energy 2015, 12, 215–223. [Google Scholar] [CrossRef]
- Bruch, A.W.; Xiong, C.; Leung, B.; Poot, M.; Han, J.; Tang, H.X. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films. Appl. Phys. Lett. 2015, 107, 141113. [Google Scholar] [CrossRef]
- Liao, W.C.; Liao, S.W.; Chen, K.J.; Hsiao, Y.H.; Chang, S.W.; Kuo, H.C.; Shih, M.H. Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature. Sci. Rep. 2016, 6, 26578. [Google Scholar] [CrossRef]
- Choi, H.W.; Hui, K.N.; Lai, P.T.; Chen, P.; Zhang, X.H.; Tripathy, S.; Teng, J.H.; Chua, S.J. Lasing in GaN microdisks pivoted on Si. Appl. Phys. Lett. 2006, 89, 211101. [Google Scholar] [CrossRef]
- Sharma, N.; Pandey, V.; Gupta, A.; Tan, S.T.; Tripathy, S.; Kumar, M. Recent progress on group III nitride nanostructure-based gas sensors. J. Mater. Chem. C 2022, 10, 12157–12190. [Google Scholar] [CrossRef]
- Hobbs, R.G.; Petkov, N.; Holmes, J.D. Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mater. 2012, 24, 1975–1991. [Google Scholar] [CrossRef]
- Kamon, K.; Takagishi, S.; Mori, H. Selective epitaxial growth of GaAs by low-pressure MOVPE. J. Cryst. Growth 1985, 73, 73–76. [Google Scholar] [CrossRef]
- Galeuchet, Y.D.; Roentgen, P.; Graft, V. GaInAs/InP selective area metalorganic vapor phase epitaxy for one-step-grown buried low-dimensional structures. J. Appl. Phys. 1990, 68, 560–568. [Google Scholar] [CrossRef]
- Hemmingsson, C.; Pozina, G.; Khromov, S.; Monemar, B. Growth of GaN nanotubes by halide vapor phase epitaxy. Nanotechnology 2011, 22, 085602. [Google Scholar] [CrossRef]
- Pozina, G.; Gubaydullin, A.R.; Mitrofanov, M.I.; Kaliteevski, M.A.; Levitskii, I.V.; Voznyuk, G.V.; Tatarinov, E.E.; Evtikhiev, V.P.; Rodin, S.N.; Kaliteevskiy, V.N.; et al. Approach to high quality GaN lateral nanowires and planar cavities fabricated by focused ion beam and metal-organic vapor phase epitaxy. Sci. Rep. 2018, 8, 7218. [Google Scholar] [CrossRef] [PubMed]
- Pozina, G.; Ivanov, K.A.; Mitrofanov, M.I.; Kaliteevski, M.A.; Morozov, K.M.; Levitskii, I.V.; Voznyuk, G.V.; Evtikhiev, V.P.; Rodin, S.N. Optical cavity based on GaN planar nanowires grown by selective area metal-organic vapor phase epitaxy. Phys. Status Solidi B 2019, 256, 180063. [Google Scholar] [CrossRef]
- Morozov, K.M.; Ivanov, K.A.; Belonovski, A.V.; Girshova, E.I.; Pereira, D.D.S.; Menelaou, C.; Pander, P.; Franca, L.G.; Monkman, A.P.; Pozina, G.; et al. Efficient UV luminescence from organic-based Tamm plasmon structures emitting in the strong-coupling regime. J. Phys. Chem. C 2020, 124, 21656–21663. [Google Scholar] [CrossRef]
- Belonovski, A.V.; Morozov, K.M.; Girshova, E.I.; Pozina, G.; Kaliteevski, M.A. Quantum analysis of luminescence of an exciton in a meso-cavity. Opt. Express 2021, 29, 20724–20734. [Google Scholar] [CrossRef]
- Fadil, A.; Ou, Y.; Iida, D.; Kamiyama, S.; Petersen, P.M.; Ou, H. Combining surface plasmonic and light extraction enhancement on InGaN quantum-well light-emitters. Nanoscale 2016, 8, 16340–16348. [Google Scholar] [CrossRef]
- Pescaglini, A.; Iacopino, D. Metal nanoparticle–semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing. J. Mater. Chem. C 2015, 3, 11785–11800. [Google Scholar] [CrossRef]
- Andrew, P.; Kitson, S.C.; Barnes, W.L. Surface-plasmon energy gaps and photoabsorption. J. Mod. Opt. 1997, 44, 395–406. [Google Scholar] [CrossRef]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.; Feld, M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670. [Google Scholar] [CrossRef]
- Kwon, M.A.K.; Kim, J.Y.; Kim, B.H.; Park, I.K.; Cho, C.Y.; Byeon, C.C.; Park, S.J. Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 2008, 20, 1253–1257. [Google Scholar] [CrossRef]
- Li, D.; Sun, X.; Song, H.; Li, Z.; Chen, Y.; Jiang, H.; Miao, G. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 2012, 24, 845–849. [Google Scholar] [CrossRef]
- Hyun, J.K.; Lauhon, L.J. Spatially resolved plasmonically enhanced photocurrent from Au nanoparticles on a Si nanowire. Nano Lett. 2011, 11, 2731–2734. [Google Scholar] [CrossRef]
- Chen, R.; Li, D.; Hu, H.; Zhao, Y.; Wang, Y.; Wong, N.; Wang, S.; Zhang, Y.; Hu, J.; Shen, Z. Tailoring Optical properties of silicon nanowires by Au nanostructure decorations: Enhanced Raman scattering and photodetection. J. Phys. Chem. C 2012, 116, 4416–4422. [Google Scholar] [CrossRef]
- Cheng, C.; Sie, E.; Liu, B.; Huan, C.; Sum, T.; Sun, H.; Fan, H. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Appl. Phys. Lett. 2010, 96, 071107. [Google Scholar] [CrossRef]
- Jang, L.W.; Jeon, D.W.; Kim, M.; Jeon, J.W.; Polyakov, A.Y.; Ju, J.W.; Lee, S.J.; Baek, J.H.; Yang, J.K.; Lee, I.H. Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and Ag/SiO2 nanoparticles. Adv. Funct. Mater. 2012, 22, 2728–2734. [Google Scholar] [CrossRef]
- Pozina, G.; Hsu, C.W.; Abrikossova, N.; Hemmingsson, C. Plasma-assisted halide vapor phase epitaxy for low temperature growth of III-nitrides. Crystals 2023, 13, 373. [Google Scholar] [CrossRef]
- Monemar, B.; Paskov, P.P.; Pozina, G.; Hemmingsson, C.; Bergman, J.P.; Khromov, S.; Izyumskaya, V.N.; Avrutin, V.; Li, X.; Morkoç, H.; et al. Properties of the main Mg-related acceptors in GaN from optical and structural studies. J. Appl. Phys. 2014, 115, 053507. [Google Scholar] [CrossRef]
- Pozina, G.; Bergman, J.P.; Paskova, T.; Monemar, B. Bound exciton dynamics in GaN grown by hydride vapor-phase epitaxy. Appl. Phys. Lett. 1999, 75, 4124. [Google Scholar] [CrossRef]
- Fan, X.; Zheng, W.; Singh, D. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 2014, 3, e179. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.S.; Tribelsky, M.I.; Ternovsky, V.; Wang, Z.B.; Hong, M.H.; Shi, L.P.; Chong, T.C. Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials. J. Opt. A Pure Appl. Opt. 2007, 9, S294–S300. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley-VCH Verlag GmbH & Co. KGaA: New York, NY, USA, 1998. [Google Scholar]
- Ali, A.; Naqvi, Q.A.; Baqir, M.A. Investigation of the plasmon resonance of core-shell nanoparticle in the near-infrared region. J. Electromagn. Waves Appl. 2019, 33, 2462–2475. [Google Scholar] [CrossRef]
- Ali, A.; Mitra, A.; Aïssa, B. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials 2022, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Mancarella, C.; Sygletou, M.; Bricchi, B.R.; Bisio, F.; Bassi, A.L. Tunable optical and plasmonic response of Au nanoparticles embedded in Ta-doped TiO2 transparent conducting films. Phys. Rev. Mater. 2022, 6, 025201. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, R.; Luo, Y.; Zhang, S.; Xu, L.; Min, H.; Tang, S.; Meng, X. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 2021, 81, 105600. [Google Scholar] [CrossRef]
- An, X.; Kays, J.C.; Lightcap, I.V.; Ouyang, T.; Dennis, A.M.; Reinhard, B.M. Wavelength-dependent bifunctional plasmonic photocatalysis in Au/chalcopyrite hybrid nanostructures. ACS Nano 2022, 16, 6813–6824. [Google Scholar] [CrossRef]
- Pathak, N.K.; Parthasarathi; Kumar, P.S.; Sharma, R.P. Tuning of the surface plasmon resonance of aluminum nanoshell near-infrared regimes. Phys. Chem. Chem. Phys. 2019, 21, 9441–9449. [Google Scholar] [CrossRef]
- Shugabaev, T.; Gridchin, V.O.; Komarov, S.D.; Kirilenko, D.A.; Kryzhanovskaya, N.V.; Kotlyar, K.P.; Reznik, R.R.; Girshova, Y.I.; Nikolaev, V.V.; Kaliteevski, M.A.; et al. Photoluminescence redistribution of InGaN nanowires induced by plasmonic silver nanoparticles. Nanomaterials 2023, 13, 1069. [Google Scholar] [CrossRef]
- Nwanya, A.C.; Ugwuoke, P.E.; Ezekoye, B.A.; Osuji, R.U.; Ezema, F.I. Structural and optical properties of chemical bath deposited silver oxide thin films: Role of deposition time. Adv. Mater. Sci. Eng. 2013, 2013, 450820. [Google Scholar] [CrossRef]
- Lin, M.E.; Sverdlov, B.N.; Strite, S.; Morkoç, H.; Drakin, A.E. Refractive indices of wurtzite and zincblende GaN. Electron. Lett. 1993, 29, 1759–1760. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozina, G.; Hemmingsson, C.; Abrikossova, N.; Girshova, E.I.; Lähderanta, E.; Kaliteevski, M.A. Effect of Plasmonic Ag Nanoparticles on Emission Properties of Planar GaN Nanowires. Nanomaterials 2023, 13, 1421. https://doi.org/10.3390/nano13081421
Pozina G, Hemmingsson C, Abrikossova N, Girshova EI, Lähderanta E, Kaliteevski MA. Effect of Plasmonic Ag Nanoparticles on Emission Properties of Planar GaN Nanowires. Nanomaterials. 2023; 13(8):1421. https://doi.org/10.3390/nano13081421
Chicago/Turabian StylePozina, Galia, Carl Hemmingsson, Natalia Abrikossova, Elizaveta I. Girshova, Erkki Lähderanta, and Mikhail A. Kaliteevski. 2023. "Effect of Plasmonic Ag Nanoparticles on Emission Properties of Planar GaN Nanowires" Nanomaterials 13, no. 8: 1421. https://doi.org/10.3390/nano13081421
APA StylePozina, G., Hemmingsson, C., Abrikossova, N., Girshova, E. I., Lähderanta, E., & Kaliteevski, M. A. (2023). Effect of Plasmonic Ag Nanoparticles on Emission Properties of Planar GaN Nanowires. Nanomaterials, 13(8), 1421. https://doi.org/10.3390/nano13081421