Strontium-Cobaltite-Based Perovskite (SrCoO3) for Solar-Driven Interfacial Evaporation Systems for Clean Water Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Strontium-Cobaltite-Based Perovskite (SrCoO3)
2.3. SrCoO3-Coated Nickel Foam Solar Evaporator
2.4. Material Characterization Information
2.5. Controlled Solar-Evaporation Experiment
2.6. Evaporation Efficiency
3. Results & Discussion
3.1. Crystal Structure & Compositional Analysis
3.2. Surface Morphology
3.3. Solar-Driven Evaporation Efficiency
3.4. Salt-Rejection Ability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Irshad, M.S.; Arshad, N.; Wang, X. Nanoenabled Photothermal Materials for Clean Water Production. Glob. Chall. 2020, 5, 2000055. [Google Scholar] [CrossRef] [PubMed]
- Arshad, N.; Ahmed, I.; Irshad, M.S.; Li, H.R.; Wang, X.; Ahmad, S.; Sharaf, M.; Firdausi, M.; Zaindin, M.; Atif, M. Super Hydrophilic Activated Carbon Decorated Nanopolymer Foam for Scalable, Energy Efficient Photothermal Steam Generation, as an Effective Desalination System. Nanomaterials 2020, 10, 2510. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Irshad, M.S.; Jin, Y.; Hu, J.; Liu, W. Arabic-Dome-Inspired Hierarchical Design for Stable and High-Efficiency Solar-Driven Seawater Desalination. Desalination 2022, 544, 116125. [Google Scholar] [CrossRef]
- Dao, V.-D.; Vu, N.H.; Yun, S. Recent Advances and Challenges for Solar-Driven Water Evaporation System toward Applications. Nano Energy 2020, 68, 104324. [Google Scholar] [CrossRef]
- Irshad, M.S.; Hao, Y.; Arshad, N.; Alomar, M.; Lin, L.; Li, X.; Wageh, S.; Al-Hartomy, O.A.; Al-Sehemi, A.G.; Dao, V.-D.; et al. Highly Charged Solar Evaporator toward Sustainable Energy Transition for In-Situ Freshwater & Power Generation. Chem. Eng. J. 2023, 458, 141431. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, W.; Arshad, N.; Zhang, Z.; Yan, D.; Irshad, M.S.; Yu, L.; Wang, X. Excellent Energy Capture of Hierarchical MoS2 Nanosheets Coupled with MXene for Efficient Solar Evaporators and Thermal Packs. Carbon N. Y. 2022, 186, 19–27. [Google Scholar] [CrossRef]
- Irshad, M.S.; Arshad, N.; Wang, X.; Li, H.R.; Javed, M.Q.; Xu, Y.; Alshahrani, L.A.; Mei, T.; Li, J. Intensifying Solar Interfacial Heat Accumulation for Clean Water Generation Excluding Heavy Metal Ions and Oil Emulsions. Sol. RRL 2021, 5, 2100427. [Google Scholar] [CrossRef]
- Irshad, M.S.; Arshad, N.; Zhang, J.; Song, C.; Mushtaq, N.; Alomar, M.; Shamim, T.; Dao, V.-D.; Wang, H.; Wang, X.; et al. Wormlike Perovskite Oxide Coupled with Phase-Change Material for All-Weather Solar Evaporation and Thermal Storage Applications. Adv. Energy Sustain. Res. 2023, 4, 2200158. [Google Scholar] [CrossRef]
- Yu, F.; Guo, Z.; Xu, Y.; Chen, Z.; Irshad, M.S.; Qian, J.; Mei, T.; Wang, X. Biomass-Derived Bilayer Solar Evaporator with Enhanced Energy Utilization for High-Efficiency Water Generation. ACS Appl. Mater. Interfaces 2020, 12, 57155–57164. [Google Scholar] [CrossRef]
- Liu, G.; Yu, F.; Irshad, M.S.; Xiong, X.; Guo, Z.; Wang, J.; Xiao, B.; Lin, L.; Wang, X. Biomass-Inspired Solar Evaporator for Simultaneous Steam and Power Generation Enhanced by Thermal-Electric Effect. Energy Technol. 2022, 10, 2200854. [Google Scholar] [CrossRef]
- Wei, Z.; Arshad, N.; Irshad, M.S.; Idrees, M.; Ahmed, I.; Li, H.; Qazi, H.H.; Yousaf, M.; Alshahrani, L.A.; Lu, Y. A Scalable Prototype by In Situ Polymerization of Biodegradables, Cross-Linked Molecular Mode of Vapor Transport, and Metal Ion Rejection for Solar-Driven Seawater Desalination. Crystals 2021, 11, 1489. [Google Scholar] [CrossRef]
- Wei, Z.; Arshad, N.; Hui, C.; Irshad, M.S.; Mushtaq, N.; Hussain, S.; Shah, M.; Naqvi, S.Z.H.; Rizwan, M.; Shahzad, N.; et al. Interfacial Photothermal Heat Accumulation for Simultaneous Salt Rejection and Freshwater Generation; an Efficient Solar Energy Harvester. Nanomaterials 2022, 12, 3206. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.S.; Wang, X.; Abbasi, M.S.; Arshad, N.; Chen, Z.; Guo, Z.; Yu, L.; Qian, J.; You, J.; Mei, T. Semiconductive, Flexible MnO2 NWs/Chitosan Hydrogels for Efficient Solar Steam Generation. ACS Sustain. Chem. Eng. 2021, 9, 3887–3900. [Google Scholar] [CrossRef]
- Yu, F.; Chen, Z.; Guo, Z.; Irshad, M.S.; Yu, L.; Qian, J.; Mei, T.; Wang, X. Molybdenum Carbide/Carbon-Based Chitosan Hydrogel as an Effective Solar Water Evaporation Accelerator. ACS Sustain. Chem. Eng. 2020, 8, 7139–7149. [Google Scholar] [CrossRef]
- Wang, J.; Shamim, T.; Arshad, N.; Irshad, M.S.; Mushtaq, M.N.; Zhang, C.; Yousaf, M.; Alshahrani, L.A.; Akbar, M.; Lu, Y. In Situ Polymerized Fe2O3@ PPy/Chitosan Hydrogels as a Hydratable Skeleton for Solar-Driven Evaporation. J. Am. Ceram. Soc. 2022, 105, 5325–5335. [Google Scholar] [CrossRef]
- Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-Driven Interfacial Evaporation. Nat. Energy 2018, 3, 1031–1041. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, G.; Liu, Y.; Li, H.; Zhang, P.; Zhan, L.; Gao, R.; Huang, C. Low-Cost, Unsinkable, and Highly Efficient Solar Evaporators Based on Coating MWCNTs on Nonwovens with Unidirectional Water-Transfer. Adv. Sci. 2021, 8, 2101727. [Google Scholar] [CrossRef]
- Wu, S.-L.; Chen, H.; Wang, H.-L.; Chen, X.; Yang, H.-C.; Darling, S.B. Solar-Driven Evaporators for Water Treatment: Challenges and Opportunities. Environ. Sci. Water Res. Technol. 2021, 7, 24–39. [Google Scholar] [CrossRef]
- Guo, X.-L.; Ding, Z.-Y.; Deng, S.-M.; Wen, C.-C.; Shen, X.-C.; Jiang, B.-P.; Liang, H. A Novel Strategy of Transition-Metal Doping to Engineer Absorption of Carbon Dots for near-Infrared Photothermal/Photodynamic Therapies. Carbon N. Y. 2018, 134, 519–530. [Google Scholar] [CrossRef]
- Shangguan, Z.; Zheng, X.; Zhang, J.; Lin, W.; Guo, W.; Li, C.; Wu, T.; Lin, Y.; Chen, Z. The Stability of Metal Halide Perovskite Nanocrystals—A Key Issue for the Application on Quantum-Dot-Based Micro Light-Emitting Diodes Display. Nanomaterials 2020, 10, 1375. [Google Scholar] [CrossRef]
- Tahini, H.A.; Tan, X.; Zhou, W.; Zhu, Z.; Schwingenschlögl, U.; Smith, S.C. Sc and Nb Dopants in SrCoO3 Modulate Electronic and Vacancy Structures for Improved Water Splitting and SOFC Cathodes. Energy Storage Mater. 2017, 9, 229–234. [Google Scholar] [CrossRef]
- Aguadero, A.; Pérez-Coll, D.; Alonso, J.A.; Skinner, S.J.; Kilner, J. A New Family of Mo-Doped SrCoO3−δ Perovskites for Application in Reversible Solid State Electrochemical Cells. Chem. Mater. 2012, 24, 2655–2663. [Google Scholar] [CrossRef]
- Duan, D.; Fang, X.; Li, K. A Peroxidase-like Nanoenzyme Based on Strontium(II)-Ion-Exchanged Prussian Blue Analogue Derivative SrCoO3/Co3O4 Nanospheres and Carbon Quantum Dots for the Colorimetric Detection of Tigecycline in River Water. Talanta 2022, 240, 123112. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, W.; Liu, Y.; Zhong, Y.; Xu, X.; Sun, Y.; Wang, J.; Zhou, W.; Shao, Z. An Intrinsically Conductive Phosphorus-Doped Perovskite Oxide as a New Cathode for High-Performance Dye-Sensitized Solar Cells by Providing Internal Conducting Pathways. Sol. RRL 2019, 3, 1900108. [Google Scholar] [CrossRef]
- He, J.; Xu, X.; Sun, H.; Miao, T.; Li, M.; Zhou, S.; Zhou, W. Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for P-Phenylenediamine Detection. Molecules 2023, 28, 1122. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, A.; Wilson, G.E.; Kerherve, G.; Cali, E.; van den Bosch, C.A.M.; Boldrin, P.; Payne, D.; Skinner, S.J.; Aguadero, A. Analysis of H2O-Induced Surface Degradation in SrCoO3-Derivatives and Its Impact on Redox Kinetics. J. Mater. Chem. A 2021, 9, 24528–24538. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, Y.; Wang, J.-O.; Qian, H.; Liu, C.; He, X.; Zhang, Q.; Huang, H.; Zhang, B.; Li, S.; et al. Electronic Structure Evolutions Driven by Oxygen Vacancy in SrCoO3−x Films. Sci. China Mater. 2019, 62, 1162–1168. [Google Scholar] [CrossRef]
- Verma, A.K.; Mahato, D.K. Structural and FTIR Analysis of SrCoO3 Perovskite Ceramics. IOSR J. Appl. Phys. 2022, 14, 25–28. [Google Scholar] [CrossRef]
- Xu, W.; Hu, X.; Zhuang, S.; Wang, Y.; Li, X.; Zhou, L.; Zhu, S.; Zhu, J. Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination. Adv. Energy Mater. 2018, 8, 1702884. [Google Scholar] [CrossRef]
- Song, L.; Zhang, X.-F.; Wang, Z.; Zheng, T.; Yao, J. Fe3O4/Polyvinyl Alcohol Decorated Delignified Wood Evaporator for Continuous Solar Steam Generation. Desalination 2021, 507, 115024. [Google Scholar] [CrossRef]
- Hou, B.; Kong, D.; Chen, Z.; Shi, Z.; Cheng, H.; dong Guo, D.; Wang, X. Flexible Graphene Oxide/Mixed Cellulose Ester Films for Electricity Generation and Solar Desalination. Appl. Therm. Eng. 2019, 163, 114322. [Google Scholar] [CrossRef]
- Lu, Y.; Dai, T.; Fan, D.; Min, H.; Ding, S.; Yang, X. Turning Trash into Treasure: Pencil Waste–Derived Materials for Solar-Powered Water Evaporation. Energy Technol. 2020, 8, 2000567. [Google Scholar] [CrossRef]
- Qiu, P.; Liu, F.; Xu, C.; Chen, H.; Jiang, F.; Li, Y.; Guo, Z. Porous Three-Dimensional Carbon Foams with Interconnected Microchannels for High-Efficiency Solar-to-Vapor Conversion and Desalination. J. Mater. Chem. A 2019, 7, 13036–13042. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, X.; Wang, G.; Ming, X.; Liu, X.; Wang, H.; Yang, H.; Xu, W.; Wang, X. Silk-Based Systems for Highly Efficient Photothermal Conversion under One Sun: Portability, Flexibility, and Durability. J. Mater. Chem. A 2018, 6, 17212–17219. [Google Scholar] [CrossRef]
Sr. No | Solar Driven System | Evaporation Rate (Kg m−2 h−1) | Efficiency (%) | Ref. |
---|---|---|---|---|
1. | Carbon-black-coated polymethylmethacrylate (PMMA) layer, (CB/PMMA) | 1.3 | 72 | [29] |
2. | Fe3O4-coated delignified wood (Fe-D-Wood) | 1.3 | 73 | [30] |
3. | Graphene oxide/cellulose ester membrane (GO/MCE) | 1.3 | 86 | [31] |
4. | Carbonized pencil waste evaporator | 1.2 | 82.2 | [32] |
5. | In situ alkalized 3D carbon foam (CF) | 1.26 | 80.1 | [33] |
6. | Black sand | 1.43 | 81 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Alomar, M.; Alqarni, A.S.; Arshad, N.; Akbar, M.; Yousaf, M.; Irshad, M.S.; Lu, Y.; Liu, Q. Strontium-Cobaltite-Based Perovskite (SrCoO3) for Solar-Driven Interfacial Evaporation Systems for Clean Water Generation. Nanomaterials 2023, 13, 1420. https://doi.org/10.3390/nano13081420
He M, Alomar M, Alqarni AS, Arshad N, Akbar M, Yousaf M, Irshad MS, Lu Y, Liu Q. Strontium-Cobaltite-Based Perovskite (SrCoO3) for Solar-Driven Interfacial Evaporation Systems for Clean Water Generation. Nanomaterials. 2023; 13(8):1420. https://doi.org/10.3390/nano13081420
Chicago/Turabian StyleHe, Miao, Muneerah Alomar, Areej S. Alqarni, Naila Arshad, Muhammad Akbar, Muhammad Yousaf, Muhammad Sultan Irshad, Yuzheng Lu, and Qiang Liu. 2023. "Strontium-Cobaltite-Based Perovskite (SrCoO3) for Solar-Driven Interfacial Evaporation Systems for Clean Water Generation" Nanomaterials 13, no. 8: 1420. https://doi.org/10.3390/nano13081420
APA StyleHe, M., Alomar, M., Alqarni, A. S., Arshad, N., Akbar, M., Yousaf, M., Irshad, M. S., Lu, Y., & Liu, Q. (2023). Strontium-Cobaltite-Based Perovskite (SrCoO3) for Solar-Driven Interfacial Evaporation Systems for Clean Water Generation. Nanomaterials, 13(8), 1420. https://doi.org/10.3390/nano13081420