Nontrivial Topological Properties and Synthesis of Sn2CoS with L21 Structure
Abstract
1. Introduction
2. Computational Details and Experimental Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef]
- Burkov, A.A.; Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 2011, 107, 127205. [Google Scholar] [CrossRef]
- Weng, H.M.; Fang, C.; Fang, Z.; Bernevig, B.A.; Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 2015, 5, 011029. [Google Scholar] [CrossRef]
- Young, S.M.; Zaheer, S.; Teo, J.C.; Kane, C.L.; Mele, E.J.; Rappe, A.M. Dirac semimetal in three dimensions. Phys. Rev. Lett. 2012, 108, 140405. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Sun, Y.; Chen, X.Q.; Franchini, C.; Xu, G.; Weng, H.M.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 2012, 85, 195320. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, X.M.; Dai, X.F.; Liu, H.Y.; Chen, G.F.; Liu, G.D. Centrosymmetric Li2NaN: A superior topological electronic material with critical-type triply degenerate nodal points. J. Mater. Chem. C 2019, 7, 1316–1320. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, X.M.; Dai, X.F.; Wang, L.Y.; Liu, H.Y.; Liu, G.D. Screening topological materials with a CsCl-type structure in crystallographic databases. IUCrJ 2019, 6, 688–694. [Google Scholar] [CrossRef]
- Weng, H.M.; Liang, Y.Y.; Xu, Q.N.; Yu, R.; Fang, Z.; Dai, X.; Kawazoe, Y. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 2015, 92, 045108. [Google Scholar] [CrossRef]
- Yang, S.A.; Pan, H.; Zhang, F. Dirac and Weyl superconductors in three dimensions. Phys. Rev. Lett. 2014, 113, 046401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Yu, Z.M.; Sheng, X.L.; Yang, H.Y.; Yang, S.A. Coexistence of four-band nodal rings and triply degenerate nodal points in centrosymmetric metal diborides. Phys. Rev. B 2017, 95, 235116. [Google Scholar] [CrossRef]
- Xie, L.S.; Schoop, L.M.; Seibel, E.M.; Gibson, Q.D.; Xie, W.W.; Cava, R.J. Line of Dirac Nodes in Hyperhoneycomb Lattices. APL Mater. 2015, 3, 083602. [Google Scholar] [CrossRef]
- Chan, Y.H.; Chiu, C.K.; Chou, M.Y.; Schnyder, A.P. Ca3P2 and other topological semimetals with line nodes and drumhead surface states. Phys. Rev. B 2016, 93, 205132. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, X.M.; He, T.L.; Meng, W.Z.; Dai, X.F.; Liu, G.D. Ferromagnetic two-dimensional metal-chlorides MCl (M = Sc, Y, and La): Candidates for Weyl nodal line semimetals with small spin-orbit coupling gaps. Appl. Surf. Sci. 2020, 520, 146376. [Google Scholar] [CrossRef]
- Li, R.; Ma, H.; Cheng, X.; Wang, S.; Li, D.; Zhang, Z.; Li, Y.; Chen, X.Q. Dirac node lines in pure alkali earth metals. Phys. Rev. Lett. 2016, 117, 096401. [Google Scholar] [CrossRef]
- Meng, W.Z.; Zhang, X.M.; He, T.L.; Jin, L.; Dai, X.F.; Liu, G.D. Crystal Structures, Electronic Structures, and Topological Signatures in Equiatomic TT′ X Compounds (T = Sc, Zr, Hf; T′ = Co, Pt, Pd, Ir, Rh; X = Al, Ga, Sn). J. Phys. Chem. C 2020, 124, 7378–7385. [Google Scholar] [CrossRef]
- Wang, X.T.; Ding, G.Q.; Cheng, Z.X.; Surucu, G.; Wang, X.L.; Yang, T. Novel topological nodal lines and exotic drum-head-like surface states in synthesized CsCl-type binary alloy TiOs. J. Adv. Res. 2020, 22, 137–144. [Google Scholar] [CrossRef]
- Wang, X.T.; Ding, G.Q.; Cheng, Z.X.; Surucu, G.; Wang, X.L.; Yang, T. Rich topological nodal line bulk states together with drum-head-like surface states in NaAlGe with anti-PbFCl type structure. J. Adv. Res. 2020, 23, 95–100. [Google Scholar] [CrossRef]
- Zhong, C.Y.; Chen, Y.P.; Xie, Y.; Yang, S.A.; Cohen, M.L.; Zhang, S.B. Towards three-dimensional Weyl-surface semimetals in graphene networks. Nanoscale 2016, 8, 7232–7239. [Google Scholar] [CrossRef]
- Liang, Q.F.; Zhou, J.; Yu, R.; Wang, Z.; Weng, H.M. Node-surface and node-line fermions from nonsymmorphic lattice symmetries. Phys. Rev. B 2016, 93, 085427. [Google Scholar] [CrossRef]
- Wu, W.K.; Liu, Y.; Li, S.; Zhong, C.Y.; Yu, Z.M.; Sheng, X.L.; Zhao, Y.X.; Yang, S.A. Nodal surface semimetals: Theory and material realization. Phys. Rev. B 2018, 97, 115125. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yu, Z.M.; Zhu, Z.M.; Wu, W.K.; Wang, S.S.; Sheng, X.L.; Yang, S.A. Nodal loop and nodal surface states in the Ti3Al family of materials. Phys. Rev. B 2018, 97, 235150. [Google Scholar] [CrossRef]
- Li, S.; Yu, Z.M.; Liu, Y.; Guan, S.; Wang, S.S.; Zhang, X.M.; Yao, Y.; Yang, S.A. Type-II nodal loops: Theory and material realization. Phys. Rev. B 2017, 96, 081106. [Google Scholar] [CrossRef]
- Zhang, X.M.; Jin, L.; Dai, X.F.; Liu, G.D. Topological Type-II Nodal Line Semimetal and Dirac Semimetal State in Stable Kagome Compound Mg3Bi2. J. Phys. Chem. Lett. 2017, 8, 4814–4819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Jin, L.; Dai, X.F.; Liu, G.D. Highly anisotropic type-II nodal line state in pure titanium metal. App. Phys. Lett. 2018, 112, 122403. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yu, Z.M.; Lu, Y.H.; Sheng, X.L.; Yang, H.Y.; Yang, S.A. Hybrid nodal loop metal: Unconventional magnetoresponse and material realization. Phys. Rev. B 2018, 97, 125143. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, Y.P.; Xie, Y.; Chang, P.Y.; Cohen, M.L.; Zhang, S.B. A class of topological nodal rings and its realization in carbon networks. Phys. Rev. B 2018, 97, 121108. [Google Scholar] [CrossRef]
- Chang, T.R.; Xu, S.Y.; Chang, G.Q.; Lee, C.C.; Huang, S.M.; Wang, B.K.; Bian, G.; Zheng, H.; Sanchez, D.S.; Belopolski, I.; et al. Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2. Nat. Commun. 2016, 7, 10639. [Google Scholar] [CrossRef]
- O’Brien, T.E.; Diez, M.; Beenakker, C.W.J. Magnetic Breakdown and Klein Tunneling in a Type-II Weyl Semimetal. Phys. Rev. Lett. 2016, 116, 236401. [Google Scholar] [CrossRef]
- Isobe, H.; Nagaosa, N. Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions. Phys. Rev. Lett. 2016, 116, 116803. [Google Scholar] [CrossRef]
- Koshino, M. Cyclotron resonance of figure-of-eight orbits in a type-II Weyl semimetal. Phys. Rev. B 2016, 94, 035202. [Google Scholar] [CrossRef]
- Yu, Z.M.; Yao, Y.G.; Yang, S.A. Predicted Unusual Magnetoresponse in Type-II Weyl Semimetals. Phys. Rev. Lett. 2016, 117, 077202. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.Z.; Zhang, X.M.; Liu, Y.; Dai, X.F.; Liu, G.D. Antiferromagnetism caused by excess electrons and multiple topological electronic states in the electride Ba4Al5⋅e−. Phys. Rev. B 2021, 104, 195145. [Google Scholar] [CrossRef]
- Singha, R.; Pariari, A.K.; Satpati, B.; Mandal, P. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS. Proc. Natl. Acad. Sci. USA 2017, 114, 2468–2473. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.N.; Schoop, L.M.; Garg, C.; Lippmann, J.M.; Lara, E.; Lotsch, B.; Parkin, S.P. Butterfly magnetoresistance, quasi-2D Dirac Fermi surface and topological phase transition in ZrSiS. Sci. Adv. 2016, 2, e1601742. [Google Scholar] [CrossRef]
- Wang, Z.J.; Weng, H.M.; Wu, Q.S.; Dai, X.; Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 2013, 88, 125427. [Google Scholar] [CrossRef]
- Yang, B.J.; Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 2014, 5, 4898. [Google Scholar] [CrossRef]
- Soluyanov, A.A.; Gresch, D.; Wang, Z.J.; Wu, Q.S.; Troyer, M.; Dai, X.; Bernevig, B.A. Type II Weyl Semimetals. Nature 2015, 527, 495–498. [Google Scholar] [CrossRef]
- Zhu, Z.M.; Winkler, G.W.; Wu, Q.S.; Li, J.; Soluyanov, A.A. Triple Point Topological Metals. Phys. Rev. X 2016, 6, 031003. [Google Scholar] [CrossRef]
- Bradlyn, B.; Cano, J.; Wang, Z.J.; Vergniory, M.G.; Felser, C.; Cava, R.J.; Bernevig, B.A. Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science 2016, 353, aaf5037. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Q.; Zhou, S.Y.; Duan, W.H. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys. Rev. B 2016, 94, 121117. [Google Scholar] [CrossRef]
- Le, C.C.; Qin, S.S.; Wu, X.X.; Dai, X.; Fu, P.Y.; Fang, C.; Hu, J.P. Three-dimensional topological critical Dirac semimetal in AMgBi(A = K, Rb, Cs). Phys. Rev. B 2017, 96, 115121. [Google Scholar] [CrossRef]
- Chang, T.R.; Xu, S.Y.; Sanchez, D.S.; Tsai, W.F.; Huang, S.M.; Chang, G.Q.; Hsu, C.H.; Bian, G.; Belopolski, I.; Yu, Z.M.; et al. Type-II Symmetry-Protected Topological Dirac Semimetals. Phys. Rev. Lett. 2017, 119, 026404. [Google Scholar] [CrossRef]
- Guo, P.J.; Yang, H.C.; Liu, K.; Lu, Z.Y. Type-II Dirac semimetals in the YPd2Sn class. Phys. Rev. B 2017, 95, 155112. [Google Scholar] [CrossRef]
- Pavlosiuk, O.; Kaczorowski, D. Galvanomagnetic properties of the putative type-II Dirac semimetal PtTe2. Sci. Rep. 2018, 8, 11297. [Google Scholar] [CrossRef] [PubMed]
- Dulal, R.P.; Dahal, B.R.; Forbes, A.; Bhattarai, N.; Pegg, I.L.; Philip, J. Nanostructures of type-II topological Dirac semimetal NiTe2. J. Vac. Sci. Technol. B 2019, 37, 042903. [Google Scholar] [CrossRef]
- Safeer, A.; Ahmad, N.; Khan, S.; Azam, L.A.; Bashir, D. Magnetization behavior of electrochemically synthesized Co2MnSn full Heusler alloy nanowire arrays. J. Appl. Phys. 2019, 125, 034302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Long, B.; Jin, L.; Zhang, H.; Cheng, Z.; Zhang, X.; Liu, G. Nontrivial Topological Properties and Synthesis of Sn2CoS with L21 Structure. Nanomaterials 2023, 13, 1389. https://doi.org/10.3390/nano13081389
Chen G, Long B, Jin L, Zhang H, Cheng Z, Zhang X, Liu G. Nontrivial Topological Properties and Synthesis of Sn2CoS with L21 Structure. Nanomaterials. 2023; 13(8):1389. https://doi.org/10.3390/nano13081389
Chicago/Turabian StyleChen, Guifeng, Bolin Long, Lei Jin, Hui Zhang, Zishuang Cheng, Xiaoming Zhang, and Guodong Liu. 2023. "Nontrivial Topological Properties and Synthesis of Sn2CoS with L21 Structure" Nanomaterials 13, no. 8: 1389. https://doi.org/10.3390/nano13081389
APA StyleChen, G., Long, B., Jin, L., Zhang, H., Cheng, Z., Zhang, X., & Liu, G. (2023). Nontrivial Topological Properties and Synthesis of Sn2CoS with L21 Structure. Nanomaterials, 13(8), 1389. https://doi.org/10.3390/nano13081389