Review on Resistive Switching Devices Based on Multiferroic BiFeO3
Abstract
:1. Introduction
2. Fabrication Techniques
3. Crystalline Structures
4. Resistive Switching Mechanisms
4.1. Ferroelectricity in BFO
4.2. Valence Change Memory in BFO
5. Resistive Switching Properties and Applications
5.1. RS Properties of BFO Devices
5.2. Applications Scenarios
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, C.D.; Hosseini, P.; Diosdado, J.A.V. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv. Funct. Mater. 2013, 23, 2248–2254. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, A.; Le Gallo, M.; Eleftheriou, E. Computational phase-change memory: Beyond von Neumann computing. J. Phys. Appl. Phys. 2019, 52, 443002. [Google Scholar] [CrossRef]
- Liu, H.C.; Zeng, S.M.; Li, R.; Jiang, Y.P.; Liu, Q.X.; Tang, X.G. Multiferroic properties and resistive switching behaviors of Ni0.5Zn0.5Fe2O4 thin films. Adv. Compos. Hybrid Mater. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Bogusz, A.; Bürger, D.; Skorupa, I.; Schmidt, O.G.; Schmidt, H. Bipolar resistive switching in YMnO3/Nb: SrTiO3 pn-heterojunctions. Nanotechnology 2016, 27, 455201. [Google Scholar] [CrossRef]
- Yang, C.H.; Seidel, J.; Kim, S.; Rossen, P.; Yu, P.; Gajek, M.; Chu, Y.H.; Martin, L.W.; Holcomb, M.; He, Q.; et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 2009, 8, 485–493. [Google Scholar] [CrossRef]
- Yin, K.; Li, M.; Liu, Y.; He, C.; Zhuge, F.; Chen, B.; Lu, W.; Pan, X.; Li, R.W. Resistance switching in polycrystalline BiFeO3 thin films. Appl. Phys. Lett. 2010, 97, 042101. [Google Scholar] [CrossRef]
- Jeon, J.H.; Joo, H.Y.; Kim, Y.M.; Lee, D.H.; Kim, J.S.; Kim, Y.S.; Choi, T.; Park, B.H. Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor. Sci. Rep. 2016, 6, 23299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogusz, A.; You, T.; Blaschke, D.; Scholz, A.; Shuai, Y.; Luo, W.; Du, N.; Bürger, D.; Skorupa, I.; Schmidt, O.; et al. Resistive switching in thin multiferroic films. In Proceedings of the 2013 International Semiconductor Conference Dresden-Grenoble (ISCDG), Dresden, Germany, 26–27 September 2013; pp. 1–4. [Google Scholar]
- Počuča-Nešić, M.; Marinković-Stanojević, Z.; Cotič-Smole, P.; Dapčević, A.; Tasić, N.; Branković, G.; Branković, Z. Processing and properties of pure antiferromagnetic h-YMnO3. Process. Appl. Ceram. 2019, 13, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhuge, F.; Zhu, X.; Yin, K.; Wang, J.; Liu, Y.; He, C.; Chen, B.; Li, R.W. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology 2010, 21, 425202. [Google Scholar] [CrossRef] [PubMed]
- You, T.; Du, N.; Slesazeck, S.; Mikolajick, T.; Li, G.; Buürger, D.; Skorupa, I.; Stoücker, H.; Abendroth, B.; Beyer, A.; et al. Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO3 memristors. ACS Appl. Mater. Interfaces 2014, 6, 19758–19765. [Google Scholar] [CrossRef]
- Yamada, H.; Garcia, V.; Fusil, S.; Boyn, S.; Marinova, M.; Gloter, A.; Xavier, S.; Grollier, J.; Jacquet, E.; Carrétéro, C.; et al. Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. ACS Nano 2013, 7, 5385–5390. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, S.S.; Kim, W.J. Sol–gel synthesis and properties of multiferroic BiFeO3. Mater. Lett. 2005, 59, 4006–4009. [Google Scholar] [CrossRef]
- Luo, J.; Lin, S.; Zheng, Y.; Wang, B. Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition. Appl. Phys. Lett. 2012, 101, 062902. [Google Scholar] [CrossRef]
- Chilibon, I.; Marat-Mendes, J.N. Ferroelectric ceramics by sol–gel methods and applications: A review. J.-Sol-Gel Sci. Technol. 2012, 64, 571–611. [Google Scholar] [CrossRef]
- Jilani, A.; Abdel-Wahab, M.S.; Hammad, A.H. Advance deposition techniques for thin film and coating. Mod. Technol. Creat.-Thin-Film. Syst. Coat. 2017, 2, 137–149. [Google Scholar]
- Shuai, Y.; Zhou, S.; Bürger, D.; Helm, M.; Schmidt, H. Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt. J. Appl. Phys. 2011, 109, 124117. [Google Scholar] [CrossRef] [Green Version]
- Vagadia, M.; Ravalia, A.; Solanki, P.; Choudhary, R.; Phase, D.; Kuberkar, D. Improvement in resistive switching of Ba-doped BiFeO3 films. Appl. Phys. Lett. 2013, 103, 033504. [Google Scholar] [CrossRef]
- Hong, S.; Choi, T.; Jeon, J.H.; Kim, Y.; Lee, H.; Joo, H.Y.; Hwang, I.; Kim, J.S.; Kang, S.O.; Kalinin, S.V.; et al. Large resistive switching in ferroelectric BiFeO3 nano-island based switchable diodes. Adv. Mater. 2013, 25, 2339–2343. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, Y.; Zhang, Y.; Zhang, T.; Qiu, D.; Lai, G.; Hu, C.; Wang, Q.; Zhang, F.; Li, M. Resistive switching and related magnetization switching in Pt/BiFeO3/Nb: SrTiO3 heterostructures. RSC Adv. 2017, 7, 23287–23292. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Tang, Y.; Wang, Y.; Zhu, Y.; Ma, J.; Geng, W.; Feng, Y.; Zou, M.; Zhang, N.; Ma, X. Charged domain wall modulation of resistive switching with large ON/OFF ratios in high density BiFeO3 nano-islands. Acta Mater. 2020, 187, 12–18. [Google Scholar] [CrossRef]
- Lamichhane, S.; Sharma, S.; Tomar, M.; Chowdhuri, A. Impact of laser energy on resistive switching properties of BiFeO3 thin films. Mater. Chem. Phys. 2023, 293, 126824. [Google Scholar] [CrossRef]
- Morosanu, C.E. Thin Films by Chemical Vapour Deposition; Elsevier: Amsterdam, The Netherlands, 2016; Volume 7. [Google Scholar]
- Shuai, Y.; Ou, X.; Luo, W.; Mücklich, A.; Bürger, D.; Zhou, S.; Wu, C.; Chen, Y.; Zhang, W.; Helm, M.; et al. Key concepts behind forming-free resistive switching incorporated with rectifying transport properties. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, H.; Ruan, K.; Shi, W. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates. J. Alloys Compd. 2012, 529, 108–112. [Google Scholar] [CrossRef]
- Tang, W.; Yang, J.; Zhang, J.; Jiang, Y.; Wang, J.; Cao, L.; Fu, Y. Write-once-read-many-times memory device based on Pt/BiFeO3/LaNiO3 heterostructures. Appl. Surf. Sci. 2023, 618, 156591. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, L.; Wang, C.; Cheng, W.; Wang, H.; Sun, H.; Chen, J.; Miao, X. Deposition Temperature and Thickness Effect on the Resistive Switching in BiFeO3 Films. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Sando, D.; Barthélémy, A.; Bibes, M. BiFeO3 epitaxial thin films and devices: Past, present and future. J. Phys. Condens. Matter 2014, 26, 473201. [Google Scholar] [CrossRef]
- Yan, F.; Zhu, T.; Lai, M.; Lu, L. Effect of bottom electrodes on nanoscale switching characteristics and piezoelectric response in polycrystalline BiFeO3 thin films. J. Appl. Phys. 2011, 110, 084102. [Google Scholar] [CrossRef]
- Zhu, X.; Zhuge, F.; Li, M.; Yin, K.; Liu, Y.; Zuo, Z.; Chen, B.; Li, R.W. Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO3 thin films. J. Phys. Appl. Phys. 2011, 44, 415104. [Google Scholar] [CrossRef]
- Kossar, S.; Amiruddin, R.; Rasool, A.; Kumar, M.S.; Katragadda, N.; Mandal, P.; Ahmed, N. Study on ferroelectric polarization induced resistive switching characteristics of neodymium-doped bismuth ferrite thin films for random access memory applications. Curr. Appl. Phys. 2022, 39, 221–229. [Google Scholar] [CrossRef]
- Xu, X.; Guoqiang, T.; Huijun, R.; Ao, X. Structural, electric and multiferroic properties of Sm-doped BiFeO3 thin films prepared by the sol–gelprocess. Ceram. Int. 2013, 39, 6223–6228. [Google Scholar] [CrossRef]
- Liu, L.; Tsurumaki-Fukuchi, A.; Yamada, H.; Sawa, A. Ca doping dependence of resistive switching characteristics in ferroelectric capacitors comprising Ca-doped BiFeO3. J. Appl. Phys. 2015, 118, 204104. [Google Scholar] [CrossRef]
- Wu, L.; Li, J.; Dong, C.; Wang, X.; Li, J.; Li, M. Room temperature magnetic field modulation of diode-like behavior in Ca-doped BiFeO3 thin films. J. Appl. Phys. 2022, 131, 145104. [Google Scholar] [CrossRef]
- Hussain, S.; Hasanain, S.; Jaffari, G.H.; Ali, N.Z.; Siddique, M.; Shah, S.I. Correlation between structure, oxygen content and the multiferroic properties of Sr doped BiFeO3. J. Alloys Compd. 2015, 622, 8–16. [Google Scholar] [CrossRef]
- Shannigrahi, S.; Huang, A.; Chandrasekhar, N.; Tripathy, D.; Adeyeye, A. Sc modified multiferroic BiFeO3 thin films prepared through a sol-gel process. Appl. Phys. Lett. 2007, 90, 022901. [Google Scholar] [CrossRef]
- Layek, S.; Saha, S.; Verma, H. Preparation, structural and magnetic studies on BiFe1-xCrxO3 (x = 0.0, 0.05 and 0.1) multiferroic nanoparticles. AIP Adv. 2013, 3, 032140. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Dho, J.; Tomov, R.; Blamire, M.G.; MacManus-Driscoll, J.L. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 2005, 86, 062903. [Google Scholar] [CrossRef]
- Makhdoom, A.; Akhtar, M.; Rafiq, M.; Hassan, M. Investigation of transport behavior in Ba doped BiFeO3. Ceram. Int. 2012, 38, 3829–3834. [Google Scholar] [CrossRef]
- Xu, Q.; Sobhan, M.; Yang, Q.; Anariba, F.; Ong, K.P.; Wu, P. The role of Bi vacancies in the electrical conduction of BiFeO3: A first-principles approach. Dalton Trans. 2014, 43, 10787–10793. [Google Scholar] [CrossRef]
- Jena, A.K.; Sahu, M.C.; Sahoo, S.; Mallik, S.K.; Pradhan, G.K.; Mohanty, J.; Sahoo, S. Multilevel resistive switching in graphene oxide-multiferroic thin-film-based bilayer RRAM device by interfacial oxygen vacancy engineering. Appl. Phys. 2022, 128, 213. [Google Scholar] [CrossRef]
- Peng, Z.; Wu, F.; Jiang, L.; Cao, G.; Jiang, B.; Cheng, G.; Ke, S.; Chang, K.C.; Li, L.; Ye, C. HfO2-Based Memristor as an Artificial Synapse for Neuromorphic Computing with Tri-Layer HfO2/BiFeO3/HfO2 Design. Adv. Funct. Mater. 2021, 31, 2107131. [Google Scholar] [CrossRef]
- You, T.; Shuai, Y.; Luo, W.; Du, N.; Bürger, D.; Skorupa, I.; Hübner, R.; Henker, S.; Mayr, C.; Schüffny, R.; et al. Exploiting memristive BiFeO3 bilayer structures for compact sequential logics. Adv. Funct. Mater. 2014, 24, 3357–3365. [Google Scholar] [CrossRef]
- Liu, L.; Xiong, W.; Liu, Y.; Chen, K.; Xu, Z.; Zhou, Y.; Han, J.; Ye, C.; Chen, X.; Song, Z.; et al. Designing High-Performance Storage in HfO2/BiFeO3 Memristor for Artificial Synapse Applications. Adv. Electron. Mater. 2020, 6, 1901012. [Google Scholar] [CrossRef]
- Gupta, R.; Chaudhary, S.; Kotnala, R. Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. Acs Appl. Mater. Interfaces 2015, 7, 8472–8479. [Google Scholar] [CrossRef] [PubMed]
- Biegalski, M.D.; Qiao, L.; Gu, Y.; Mehta, A.; He, Q.; Takamura, Y.; Borisevich, A.; Chen, L.Q. Impact of symmetry on the ferroelectric properties of CaTiO3 thin films. Appl. Phys. Lett. 2015, 106, 162904. [Google Scholar] [CrossRef] [Green Version]
- Haeni, J.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y.; Choudhury, S.; Tian, W.; Hawley, M.; Craigo, B.; et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 2004, 430, 758–761. [Google Scholar] [CrossRef] [Green Version]
- Yun, K.Y.; Noda, M.; Okuyama, M. Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl. Phys. Lett. 2003, 83, 3981–3983. [Google Scholar] [CrossRef]
- Smith, M.B.; Page, K.; Siegrist, T.; Redmond, P.L.; Walter, E.C.; Seshadri, R.; Brus, L.E.; Steigerwald, M.L. Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 2008, 130, 6955–6963. [Google Scholar] [CrossRef]
- Tkacz-Śmiech, K.; Koleżyński, A.; Ptak, W. Chemical bond in ferroelectric perovskites. Ferroelectrics 2000, 237, 57–64. [Google Scholar] [CrossRef]
- Chu, Y.H.; Martin, L.W.; Holcomb, M.B.; Ramesh, R. Controlling magnetism with multiferroics. Mater. Today 2007, 10, 16–23. [Google Scholar] [CrossRef]
- Liu, H.J.; Chen, H.J.; Liang, W.I.; Liang, C.W.; Lee, H.Y.; Lin, S.J.; Chu, Y.H. Structural study in highly compressed BiFeO3 epitaxial thin films on YAlO3. J. Appl. Phys. 2012, 112, 052002. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ma, J.; Peng, R.C.; Zhang, Q.; Wang, J.; Liang, Y.; Wu, J.; Chen, L.Q.; Ma, J.; Nan, C.W. Robust polarization switching in self-assembled BiFeO3 nanoislands with quad-domain structures. Acta Mater. 2019, 175, 324–330. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Menzel, S.; Noll, T. Introduction to new memory paradigms: Memristive phenomena and neuromorphic applications. Faraday Discuss. 2019, 213, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Funck, C.; Menzel, S. Comprehensive model of electron conduction in oxide-based memristive devices. ACS Appl. Electron. Mater. 2021, 3, 3674–3692. [Google Scholar] [CrossRef]
- You, T.; Ou, X.; Niu, G.; Bärwolf, F.; Li, G.; Du, N.; Bürger, D.; Skorupa, I.; Jia, Q.; Yu, W.; et al. Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes. Sci. Rep. 2015, 5, 18623. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Zhang, W.; Dedon, L.R.; Chen, D.; Khatkhatay, F.; MacManus-Driscoll, J.L.; Wang, H.; Yarotski, D.; Chen, J.; Gao, X.; et al. Couplings of polarization with interfacial deep trap and Schottky interface controlled ferroelectric memristive switching. Adv. Funct. Mater. 2020, 30, 2000664. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, R.; Cheng, L.; Cheng, M.; Cheng, W.; Tong, H.; Sun, H.; Yan, J.; Miao, X. Ultra-low power consumption and favorable reliability mn-doped BiFeO3 resistance-switching devices via tunable oxygen vacancy. Ceram. Int. 2023, 49, 9090–9096. [Google Scholar] [CrossRef]
- Setter, N.; Damjanovic, D.; Eng, L.; Fox, G.; Gevorgian, S.; Hong, S.; Kingon, A.; Kohlstedt, H.; Park, N.; Stephenson, G.; et al. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006, 100, 051606. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, C.; Wen, J.; Gai, S.; Peng, Y. Overview of emerging memristor families from resistive memristor to spintronic memristor. J. Mater. Sci. Mater. Electron. 2015, 26, 4618–4628. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Liu, Y.; Luo, Z.; Hou, C.; Zhao, W.; Yin, Y.; Li, X. Ferroelectric domain switching dynamics and memristive behaviors in BiFeO3-based magnetoelectric heterojunctions. J. Phys. Appl. Phys. 2018, 51, 234005. [Google Scholar] [CrossRef]
- Chen, S.W.; Wu, J.M. Unipolar resistive switching behavior of BiFeO3 thin films prepared by chemical solution deposition. Thin Solid Film. 2010, 519, 499–504. [Google Scholar] [CrossRef]
- Dittmann, R.; Menzel, S.; Waser, R. Nanoionic memristive phenomena in metal oxides: The valence change mechanism. Adv. Phys. 2021, 70, 155–349. [Google Scholar] [CrossRef]
- Brivio, S.; Covi, E.; Serb, A.; Prodromakis, T.; Fanciulli, M.; Spiga, S. Experimental study of gradual/abrupt dynamics of HfO2-based memristive devices. Appl. Phys. Lett. 2016, 109, 133504. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Menzel, S.; Wouters, D.J.; Guo, Y.; Robertson, J.; Roesgen, B.; Waser, R.; Rana, V. Impact of oxygen exchange reaction at the ohmic interface in Ta2O5-based ReRAM devices. Nanoscale 2016, 8, 17774–17781. [Google Scholar] [CrossRef] [PubMed]
- Illarionov, G.A.; Morozova, S.M.; Chrishtop, V.V.; Einarsrud, M.A.; Morozov, M.I. Memristive TiO2: Synthesis, technologies, and applications. Front. Chem. 2020, 8, 724. [Google Scholar] [CrossRef] [PubMed]
- Mayr, C.; Partzsch, J.; Noack, M.; Hänzsche, S.; Scholze, S.; Höppner, S.; Ellguth, G.; Schüffny, R. A biological-realtime neuromorphic system in 28 nm CMOS using low-leakage switched capacitor circuits. IEEE Trans. Biomed. Circuits Syst. 2015, 10, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Yao, E.; Basu, A. A 1 V, compact, current-mode neural spike detector with detection probability estimator in 65 nm CMOS. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 754–757. [Google Scholar]
- Yang, Z.; Han, Z.; Huang, Y.; Ye, T.T. 55 nm CMOS analog circuit implementation of LIF and STDP functions for low-power SNNs. In Proceedings of the 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Boston, MA, USA, 10–12 August 2021; pp. 1–6. [Google Scholar]
- Merolla, P.; Arthur, J.; Akopyan, F.; Imam, N.; Manohar, R.; Modha, D.S. A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm. In Proceedings of the 2011 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 19–21 September 2011; pp. 1–4. [Google Scholar]
- Frenkel, C.; Lefebvre, M.; Legat, J.D.; Bol, D. A 0.086-mm 2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. IEEE Trans. Biomed. Circuits Syst. 2018, 13, 145–158. [Google Scholar]
- Yu, S.; Gao, B.; Fang, Z.; Yu, H.; Kang, J.; Wong, H.S.P. A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 10–14. [Google Scholar]
- He, H.K.; Yang, R.; Huang, H.M.; Yang, F.F.; Wu, Y.Z.; Shaibo, J.; Guo, X. Multi-gate memristive synapses realized with the lateral heterostructure of 2D WSe2 and WO3. Nanoscale 2020, 12, 380–387. [Google Scholar] [CrossRef]
- Zhao, H.; Dong, Z.; Tian, H.; DiMarzi, D.; Han, M.G.; Zhang, L.; Yan, X.; Liu, F.; Shen, L.; Han, S.J.; et al. Atomically thin femtojoule memristive device. Adv. Mater. 2017, 29, 1703232. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Huang, J. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2016, 2, 1600100. [Google Scholar] [CrossRef]
- Xu, W.; Min, S.Y.; Hwang, H.; Lee, T.W. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2016, 2, e1501326. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; Fan, Z.; Hong, L.; Cheng, S.; Huang, Q.; Zhao, J.; Xiang, X.; Guo, E.J.; Guo, H.; Hou, Z.; et al. An electroforming-free, analog interface-type memristor based on a SrFeOx epitaxial heterojunction for neuromorphic computing. Mater. Today Phys. 2021, 18, 100392. [Google Scholar] [CrossRef]
- Praveen, P.; Rose, T.P.; Saji, K. Top electrode dependent resistive switching in M/ZnO/ITO memristors, M = Al, ITO, Cu, and Au. Microelectron. J. 2022, 121, 105388. [Google Scholar] [CrossRef]
- Yin, L.; Mi, W. Progress in BiFeO3-based heterostructures: Materials, properties and applications. Nanoscale 2020, 12, 477–523. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, S.; Lee, J.; Lu, W.D. Tuning resistive switching characteristics of tantalum oxide memristors through Si doping. ACS Nano 2014, 8, 10262–10269. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Xue, K.H.; Cheng, X.M.; Qiao, C.; Yuan, J.H.; Li, L.H.; Miao, X.S. Uniform and robust TiN/HfO2/Pt memristor through interfacial Al-doping engineering. Appl. Surf. Sci. 2021, 550, 149274. [Google Scholar] [CrossRef]
- Athena, F.F.; West, M.P.; Basnet, P.; Hah, J.; Jiang, Q.; Lee, W.C.; Vogel, E.M. Impact of titanium doping and pulsing conditions on the analog temporal response of hafnium oxide based memristor synapses. J. Appl. Phys. 2022, 131, 204901. [Google Scholar] [CrossRef]
- Tan, T.; Du, Y.; Cao, A.; Sun, Y.; Zha, G.; Lei, H.; Zheng, X. The resistive switching characteristics of Ni-doped HfOx film and its application as a synapse. J. Alloys Compd. 2018, 766, 918–924. [Google Scholar] [CrossRef]
- Menzel, S.; Böttger, U.; Wimmer, M.; Salinga, M. Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 2015, 25, 6306–6325. [Google Scholar] [CrossRef]
- Du, N.; Kiani, M.; Mayr, C.G.; You, T.; Bürger, D.; Skorupa, I.; Schmidt, O.G.; Schmidt, H. Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25 ms to 125 μs. Front. Neurosci. 2015, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Lei, P.; Duan, H.; Qin, L.; Wei, X.; Tao, R.; Wang, Z.; Guo, F.; Song, M.; Jie, W.; Hao, J. High-Performance Memristor Based on 2D Layered BiOI Nanosheet for Low-Power Artificial Optoelectronic Synapses. Adv. Funct. Mater. 2022, 32, 2201276. [Google Scholar] [CrossRef]
- Duan, H.; Cheng, S.; Qin, L.; Zhang, X.; Xie, B.; Zhang, Y.; Jie, W. Low-Power Memristor Based on Two-Dimensional Materials. J. Phys. Chem. Lett. 2022, 13, 7130–7138. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Du Nguyen, H.A.; Xie, L.; Taouil, M.; Hamdioui, S. Memristive devices for computation-in-memory. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1646–1651. [Google Scholar]
- Painkras, E.; Plana, L.A.; Garside, J.; Temple, S.; Galluppi, F.; Patterson, C.; Lester, D.R.; Brown, A.D.; Furber, S.B. SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circuits 2013, 48, 1943–1953. [Google Scholar] [CrossRef]
- Benjamin, B.V.; Gao, P.; McQuinn, E.; Choudhary, S.; Chandrasekaran, A.R.; Bussat, J.M.; Alvarez-Icaza, R.; Arthur, J.V.; Merolla, P.A.; Boahen, K. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 2014, 102, 699–716. [Google Scholar] [CrossRef]
- Liu, X.; Mao, M.; Liu, B.; Li, B.; Wang, Y.; Jiang, H.; Barnell, M.; Wu, Q.; Yang, J.; Li, H.; et al. Harmonica: A framework of heterogeneous computing systems with memristor-based neuromorphic computing accelerators. IEEE Trans. Circuits Syst. Regul. Pap. 2016, 63, 617–628. [Google Scholar] [CrossRef]
- Hu, M.; Strachan, J.P.; Li, Z.; Grafals, E.M.; Davila, N.; Graves, C.; Lam, S.; Ge, N.; Yang, J.J.; Williams, R.S. Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication. In Proceedings of the 53rd Annual Design Automation Conference, Austin, TX, USA, 5–9 June 2016; pp. 1–6. [Google Scholar]
- Jiang, H.; Yamada, K.; Ren, Z.; Kwok, T.; Luo, F.; Yang, Q.; Zhang, X.; Yang, J.J.; Xia, Q.; Chen, Y.; et al. Pulse-width modulation based dot-product engine for neuromorphic computing system using memristor crossbar array. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. [Google Scholar]
- Park, J.; Yu, T.; Joshi, S.; Maier, C.; Cauwenberghs, G. Hierarchical address event routing for reconfigurable large-scale neuromorphic systems. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2408–2422. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Qiao, N.; Stefanini, F.; Indiveri, G. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 2017, 12, 106–122. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Zhu, Y.; Wang, Y.; Yuan, G.; Liu, J.M. A review of flexible perovskite oxide ferroelectric films and their application. J. Mater. 2020, 6, 1–16. [Google Scholar] [CrossRef]
- Siddiqui, G.U.; Rehman, M.M.; Choi, K.H. Enhanced resistive switching in all-printed, hybrid and flexible memory device based on perovskite ZnSnO3 via PVOH polymer. Polymer 2016, 100, 102–110. [Google Scholar] [CrossRef]
- An, H.; Kim, W.K.; Wu, C.; Kim, T.W. Highly-stable memristive devices based on poly (methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites. Org. Electron. 2018, 56, 41–45. [Google Scholar] [CrossRef]
- Siddik, A.; Haldar, P.K.; Paul, T.; Das, U.; Barman, A.; Roy, A.; Sarkar, P.K. Nonvolatile resistive switching and synaptic characteristics of lead-free all-inorganic perovskite-based flexible memristive devices for neuromorphic systems. Nanoscale 2021, 13, 8864–8874. [Google Scholar] [CrossRef]
- Sun, H.; Luo, Z.; Zhao, L.; Liu, C.; Ma, C.; Lin, Y.; Gao, G.; Chen, Z.; Bao, Z.; Jin, X.; et al. BiFeO3-based flexible ferroelectric memristors for neuromorphic pattern recognition. ACS Appl. Electron. Mater. 2020, 2, 1081–1089. [Google Scholar] [CrossRef]
- Zheng, P.; Sun, B.; Chen, Y.; Elshekh, H.; Yu, T.; Mao, S.; Zhu, S.; Wang, H.; Zhao, Y.; Yu, Z. Photo-induced negative differential resistance in a resistive switching memory device based on BiFeO3/ZnO heterojunctions. Appl. Mater. Today 2019, 14, 21–28. [Google Scholar] [CrossRef]
Morphologies | Device Structures | Crystal Types | Ferroelectricity | RS Mechanisms | References |
---|---|---|---|---|---|
Nano thinfilm | Pt/BFO/Pt/Ti/SiO/Si | Polycrystalline | N | Barrier switching | Shuai et al., 2011 |
Nano thinfilm | Pt/BFO/LNO/Si | Polycrystalline | Y | Barrier switching | Chen et al., 2012 |
Nano island | Pt/BFO/NSTO | Single crystalline | Y | Ferroelectricity & Barrier switching | Jeon et al., 2016 |
Nano island | Pt/BFO/LSMO/LAO | Single crystalline | Y | Ferroelectricity | Chen et al., 2019 |
Nr. | Device Structures | RS Behaviors | RS Mechanisms | On/Off Ratio | Vset (V) | Vreset (V) | Endurance (#) | Retention (s) | References |
---|---|---|---|---|---|---|---|---|---|
1 | SRO/B(Ca)FO/SRO/STO | Bipolar | P-N/N-P junction switching | 500 | −12 | +12 | - | 1.3 × 106 | Yang et al., 2009 |
2 | Pt/BFO/Pt/Ti/SiO2/Si | Unipolar | Filament switching | 103 | +1.4 | +3.3 | 50 | - | Chen et al., 2010 |
3 | Au/BFO/Pt/Ti/SiO2/Si | Bipolar | Barrier switching | 631 | +11 | −11 | 104 | 2.3 × 105 | Shuai et al., 2011 |
4 | Pt/BFO/LNO/Si | Bipolar | Barrier switching | 103 | +0.4 | −0.4 | - | - | Luo et al., 2012 |
5 | Pt/BFO/SRO/STO | Bipolar | Ferro- electricity | 750 | +3 | −3 | - | 103 | Hong et al., 2013 |
6 | Pt/BFO/NSTO | Bipolar | N-P junction switching | 105 | +3 | −5 | - | 104 | Zhao et al., 2017 |
7 | Pt/BFO/SRO/STO | Bipolar | Filament switching | 103 | −3 | +3 | 300 | 103 | Wang et al., 2020 |
8 | Pt/BF(Mn)O/TiN/SiO2/Si | Bipolar | Filament switching | 40 | −0.17 | +0.9 | 104 | 104 | Zhao et al., 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Menzel, S.; Polian, I.; Schmidt, H.; Du, N. Review on Resistive Switching Devices Based on Multiferroic BiFeO3. Nanomaterials 2023, 13, 1325. https://doi.org/10.3390/nano13081325
Zhao X, Menzel S, Polian I, Schmidt H, Du N. Review on Resistive Switching Devices Based on Multiferroic BiFeO3. Nanomaterials. 2023; 13(8):1325. https://doi.org/10.3390/nano13081325
Chicago/Turabian StyleZhao, Xianyue, Stephan Menzel, Ilia Polian, Heidemarie Schmidt, and Nan Du. 2023. "Review on Resistive Switching Devices Based on Multiferroic BiFeO3" Nanomaterials 13, no. 8: 1325. https://doi.org/10.3390/nano13081325
APA StyleZhao, X., Menzel, S., Polian, I., Schmidt, H., & Du, N. (2023). Review on Resistive Switching Devices Based on Multiferroic BiFeO3. Nanomaterials, 13(8), 1325. https://doi.org/10.3390/nano13081325