Two-Dimensional Sb Modified TiO2 Nanorod Arrays as Photoanodes for Efficient Solar Water Splitting
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of 2D Sb Suspensions
2.3. Fabrication of 2D Sb Modified TiO2 NRAs
2.4. Characterizations
2.5. PEC Measurements
3. Results and Discussion
3.1. Morphology and Composition Characterization of 2D Sb/TiO2 NRAs
3.2. PEC Performance of 2D Sb/TiO2 NRAs
3.3. Possible Mechanism of the Enhanced PEC Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, C.; Moniz, S.J.A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting materials and challenges. Chem. Soc. Rev. 2017, 46, 4645–4660. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xia, Y.; Li, H.; Wang, X.; Yu, Y.; Jiao, X.; Chen, D. Highly active deficient ternary sulfide photoanode for photoelectrochemical water splitting. Nat. Commun. 2020, 11, 3078. [Google Scholar] [CrossRef]
- Ma, X. Graphynes for photocatalytic and photoelectrochemical applications. Prog. Chem. 2022, 34, 1042–1060. [Google Scholar]
- Bathula, B.; Ravindranadh, K.; Jaesool, S.; Jonghoon, K.; Kisoo, Y. Improved sunlight-driven photocatalytic abatement of tetracycline and photoelectrocatalytic water oxidation by tin oxide quantum dots anchored on nickel ferrite nanoplates. J. Electroanal. Chem. 2021, 900, 115699. [Google Scholar]
- Carroll, G.M.; Gamelin, D.R. Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes. J. Mater. Chem. A 2016, 4, 2986–2994. [Google Scholar] [CrossRef]
- Fang, Y.; Li, X.; Wang, Y.; Giordano, C.; Wang, X. Gradient sulfur doping along polymeric carbon nitride films as visible light photoanodes for the enhanced water oxidation. Appl. Catal. B Environ. 2020, 268, 118398. [Google Scholar] [CrossRef]
- Yang, W.; Prabhakar, R.R.; Tan, J.; Tilley, S.D.; Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 2019, 48, 4979–5015. [Google Scholar] [CrossRef]
- Bathula, B.; Jonghoon, K.; Kisoo, Y. Improved solar light-driven photoelectrochemical performance of cadmium sulfide-tin oxide quantum dots core-shell nanorods. Mater. Lett. 2020, 274, 128005. [Google Scholar]
- Abhijit, N.K.; Bathula, B.; Sang-Wha, L.; Jonghoon, K.; Kisoo, Y. Morphological guided sphere to dendrite BiVO4 for highly efficient organic pollutant removal and photoelectrochemical performance under solar light. Chemosphere 2022, 305, 135461. [Google Scholar]
- Ge, M.; Li, Q.; Cao, C.; Huang, J.; Li, S.; Zhang, S.; Chen, Z.; Zhang, K.; Al-Deyab, S.S.; Lai, Y. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2016, 4, 1600152. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, e1901997. [Google Scholar] [CrossRef] [PubMed]
- Chiarello, G.L.; Dozzi, M.V.; Selli, E. TiO2-based materials for photocatalytic hydrogen production. J. Energy Chem. 2017, 26, 250–258. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R.I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem. Soc. Rev. 2014, 43, 6920–6937. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Peng, F.; Lin, Y.; Yang, S.; Zhang, S.; Wang, H.; Cao, Y.; Yu, H. 2H-and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Appl. Catal. B 2019, 241, 236–245. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R.C.; Wang, C.; Zhang, J.Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Li, W.; Li, X.; Tian, H.; Wei, X.; Ren, Z.; Han, G. Ultrathin anatase TiO2 nanosheets for high-performance photocatalytic hydrogen production. Small 2017, 13, 1604115. [Google Scholar] [CrossRef]
- Zheng, L.; Han, S.; Liu, H.; Yu, P.; Fang, X. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 2016, 12, 1527–1536. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, H.; Zhu, M.; Li, Y.; Li, W. Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small 2021, 17, 1903378. [Google Scholar] [CrossRef]
- Ma, X.; Wu, Z.; Roberts, E.J.; Han, R.; Rao, G.; Zhao, Z.; Lamoth, M.; Cui, X.; Britt, R.D.; Osterloh, F.E. Surface photovoltage spectroscopy observes sub-bandgap defects in hydrothermally synthesized SrTiO3 nanocrystals. J. Phys. Chem. C 2019, 123, 25081–25090. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Jin, H.; Cao, C.; Li, J.; Mi, Z. Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A 2014, 2, 17820–17827. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Cui, X.; Zhou, W.; Cao, W.; Cheng, D.; Sun, Y. Recent advances in TiO2-based photoanodes for photoelectrochemical water splitting. Chem. Asian J. 2022, 17, e202200668. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, F.; Zhang, J.; Wang, K.; Qiu, Y.; Liang, Q.; Chen, Z. Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 2018, 10, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Lu, H.; Shi, Z.; Wu, F.; Guo, J.; Deng, K.; Li, L. 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 17200–17207. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, X.; Wang, W.; Wang, X.; Liu, C.; Xie, Q.; Li, Z.; Zhang, Z. Enhanced photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays/CdS quantum dots by coating TiO2 through atomic layer deposition. Nano Energy 2015, 11, 400–408. [Google Scholar] [CrossRef]
- Wang, X.; He, J.; Zhou, B.; Zhang, Y.; Wu, J.; Hu, R.; Liu, L.; Song, J.; Qu, J. Bandgap-tunable preparation of smooth and large two-dimensional antimonene. Angew. Chem. Int. Ed. 2018, 57, 8668–8673. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, H.; Hong, S.; Li, Y.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 9, 2664–2680. [Google Scholar] [CrossRef]
- Ares, P.; Palacios, J.J.; Abellan, G.; Gomez-Herrero, J.; Zamora, F. Recent progress on antimonene: A new bidimensional material. Adv. Mater. 2018, 30, 1703771. [Google Scholar] [CrossRef]
- Ares, P.; Zamora, F.; Gomez-Herrero, J. Optical identification of few-layer antimonene crystals. ACS Photonics 2017, 4, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Song, J.; Qu, J. Antimonene: From experimental preparation to practical application. Angew. Chem. Int. Ed. 2019, 58, 1574–1584. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, F.; Wang, M.; Wang, Z.; Han, K.; Liu, X. Excellent nonlinear absorption properties of β-antimonene nanosheets. J. Mater. Chem. C 2018, 6, 2848–2853. [Google Scholar]
- Zhang, S.; Zhou, W.; Ma, Y. Antimonene oxides: Emerging tunable direct bandgap semiconductor and novel topological insulator. Nano Lett. 2017, 17, 3434–3440. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Ismail, M.; Vigneshwaran, J.; Arunbalaji, S.; Mani, D.; Arivanandhan, M.; Jose, S.; Jayavel, R. Antimonene nanosheets with enhanced electrochemical performance for energystorage applications. Dalton Trans. 2020, 39, 13717–13725. [Google Scholar] [CrossRef]
- Xiao, Q.; Hu, C.; Wu, H.; Ren, Y.; Li, X.; Yang, F.; Yang, Q.; Dun, G.; Huang, Z.; Wang, Q.; et al. Antimonene based flexible photodetector. Nanoscale Horiz. 2020, 1, 124. [Google Scholar] [CrossRef]
- An, X.; Zhang, Y.; Chu, F.; Chen, M.; Wang, Y.; Xie, Y.; Liu, B.; Yang, Y. High polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J. Mater. Chem. C 2018, 10, 2509–2514. [Google Scholar]
- Singh, D.; Gupta, S.K.; Sonvane, Y.; Lukačević, L. Antimonene: A monolayer material for ultraviolet optical nanodevices. J. Mater. Chem. C 2016, 26, 6386–6390. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Xue, M.; Li, J.; Ma, X.; Chen, L.; Zhang, X.; MacFarlane, D.; Zhang, J. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem. Int. Ed. 2017, 56, 14718–14722. [Google Scholar] [CrossRef]
- Shu, H.; Li, Y.; Niu, X.; Guo, J. Electronic structures and optical properties of arsenene and antimonene under strain and an electric field. J. Mater. Chem. C 2018, 1, 83–90. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H. Atomically thin arsenene and antimonene: Smimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem. Int. Ed. 2015, 127, 3112–3115. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, F.; Lin, X. Two-dimensional group-VA porous crystals: Diverse electronic structures and photocatalytic properties. Comp. Mater. Sci. 2018, 154, 459–463. [Google Scholar] [CrossRef]
- Ares, P.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Aldave, D.A.; Díaz-Tendero, S.; Alcamí, M.; Martín, F.; Goómez-Herrero, J.; Zamora, F. Mechanical isolation of highly stable Antimonene under ambient conditions. Adv. Mater. 2016, 28, 6332–6336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibaja, C.; Rodriguez-San-Miguel, D.; Ares, P.; Gómez-Herrero, J.; Varela, M.; Gillen, R.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Abellán, G.; et al. Few-layer antimonene by liquid-phase exfoliation. Angew. Chem. Int. Ed. 2016, 55, 14345–14349. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Song, X.; Liu, J.; Yan, Z.; Huo, C.; Zhang, S.; Su, M.; Liao, L.; Wang, W.; Ni, Z.; et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Fu, J.; Dai, K. Graphitic carbon nitride/antimonene van der Waals heterostructurewith enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2022, 116, 192–198. [Google Scholar] [CrossRef]
- Zhao, Z.; Hong, S.; Yan, C.; Choi, C.; Jung, Y.; Liu, Y.; Liu, S.; Li, X.; Qiu, J.; Sun, Z. Efficient visible-light driven N2 fixation over two-dimensional Sb/TiO2 composites. Chem. Commun. 2019, 55, 7171–7174. [Google Scholar] [CrossRef]
- Ma, D.; Zhao, J.; Wang, R.; Xing, C.; Li, Z.; Huang, W.; Jiang, X.; Guo, Z.; Luo, Z.; Li, Y. Ultrathin GeSe nanosheets: From systematic synthesis to studies of carrier dynamics and applications for a high-performance Uv–Vis photodetector. ACS Appl. Mater. Interfaces 2019, 11, 4278–4287. [Google Scholar] [CrossRef]
- Zhang, F.; He, J.; Xiang, Y.; Zheng, K.; Xue, B.; Ye, S.; Peng, X.; Hao, Y.; Lian, J.; Zeng, P.; et al. Semimetal–semiconductor transitions for monolayer antimonene nanosheets and their application in perovskite solar cells. Adv. Mater. 2018, 30, 1803244. [Google Scholar] [CrossRef]
- Barrio, J.; Gibaja, C.; García-Tecedor, M.; Abisdris, L.; Torres, L.; Karjule, N.; Gimenez, S.; Shalom, M.; Zamora, F. Electrophoretic deposition of antimonene for photoelectrochemical applications. Appl. Mater. Today 2020, 20, 100714. [Google Scholar] [CrossRef]
- Ebenhoch, C.; Kalb, J.; Lim, J.; Seewald, T.; Scheu, C.; Schmidt-Mende, L. Hydrothermally grown TiO2 nanorod array memristors with volatile states. ACS Appl. Mater. Interfaces 2020, 12, 23363–23369. [Google Scholar] [CrossRef]
- Rouby, W.; Manuel Antuch, M.; You, S.; Milleta, P. Surface sensitization of TiO2 nanorod mats by electrodeposition of ZIF-67 for water photo-oxidation. Electrochim. Acta 2020, 339, 135882. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, P.; Jiang, P.; Guo, Z. The formation mechanism of TiO2 polymorphs under hydrothermal conditions based on the structural evolution of [Ti(OH)h(H2O)6−h]4−h monomers. J. Mater. Chem. C 2019, 7, 5764–5771. [Google Scholar] [CrossRef]
- You, S.; Wang, T.; Doong, R.; Millet, P. PEC water splitting using mats of calcined TiO2 rutile nanorods photosensitized by a thin layer of Ni-benzene dicarboxylic acid MOF. Electrochim. Acta 2021, 393, 139014. [Google Scholar] [CrossRef]
- Ning, F.; Shao, M.; Xu, S.; Fu, Y.; Zhang, R.; Wei, M.; Evansa, D.; Duan, X. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 2016, 9, 2633. [Google Scholar] [CrossRef]
- Gu, J.; Du, Z.; Zhang, C.; Ma, J.; Li, B.; Yang, S. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv. Energy Mater. 2017, 7, 1700447. [Google Scholar] [CrossRef]
- Sun, M.; Fang, Y.; Kong, Y.; Sun, S.; Yu, Z.; Umar, A. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance. Dalton Trans. 2016, 45, 12702–12709. [Google Scholar] [CrossRef]
- Wu, L.; Li, Q.; Yang, C.; Chen, Y.; Dai, Z.; Yao, B.; Zhang, X.; Cui, X. Ternary TiO2/MoSe2/γ-graphyne heterojunctions with enhanced photocatalytic hydrogen evolution. J. Mater. Sci. Mater. Electron. 2020, 31, 8796–8804. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L. Recent progress of tungsten- and molybdenum-based semiconductor materials for solar-hydrogen production. Tungsten 2019, 1, 19–45. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, F.; Qiu, Y.; Liang, Q.; Mitsuzak, N.; Chen, Z. Facile electrodeposition of cobalt hydroxide on anodic TiO2 nanotubes arrays for enhanced photoelectrochemical application. J. Photochem. Photobiol. A Chem. 2018, 353, 200–205. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Zhang, J.; Liu, X.; Zhang, X. Wedged ß-In2S3 sensitized TiO2 films for enhanced photoelectrochemical hydrogen generation. J. Alloys Compd. 2020, 831, 154798. [Google Scholar] [CrossRef]
- Dong, Z.; Ding, D.; Li, T.; Ning, C. Black Si-doped TiO2 nanotube photoanode for high-efficiency photoelectrochemical water splitting. RSC Adv. 2018, 8, 5652. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, X.; Chang, B.; Zhou, Y.; Zhang, S.; He, G.; Yang, B.; Li, J. Fabrication of B doped g-C3N4/TiO2 heterojunction for efficient photoelectrochemical water oxidation. Electrochim. Acta 2018, 282, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, Z.; Chen, D.; Guo, Z.; Ruan, M. Oxygen vacancies engineering in TiO2 homojunction/ZnFe-LDH for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 2020, 395, 125101. [Google Scholar] [CrossRef]
- Guo, Z.; Wei, J.; Zhang, B.; Ruan, M.; Liu, Z. Construction and photoelectrocatalytic performance of TiO2/BiVO4 heterojunction modified with cobalt phosphate. J. Alloys Compd. 2020, 821, 153225. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Zhang, S.; Ma, X.; Sun, Y.; Zhang, X. Two-Dimensional Sb Modified TiO2 Nanorod Arrays as Photoanodes for Efficient Solar Water Splitting. Nanomaterials 2023, 13, 1293. https://doi.org/10.3390/nano13071293
Gao J, Zhang S, Ma X, Sun Y, Zhang X. Two-Dimensional Sb Modified TiO2 Nanorod Arrays as Photoanodes for Efficient Solar Water Splitting. Nanomaterials. 2023; 13(7):1293. https://doi.org/10.3390/nano13071293
Chicago/Turabian StyleGao, Jie, Shengqi Zhang, Xiaoqing Ma, Yi Sun, and Xiaoyan Zhang. 2023. "Two-Dimensional Sb Modified TiO2 Nanorod Arrays as Photoanodes for Efficient Solar Water Splitting" Nanomaterials 13, no. 7: 1293. https://doi.org/10.3390/nano13071293
APA StyleGao, J., Zhang, S., Ma, X., Sun, Y., & Zhang, X. (2023). Two-Dimensional Sb Modified TiO2 Nanorod Arrays as Photoanodes for Efficient Solar Water Splitting. Nanomaterials, 13(7), 1293. https://doi.org/10.3390/nano13071293