Application of Covalent Organic Frameworks (COFs) as Dyes and Additives for Dye-Sensitized Solar Cells (DSSCs)
Abstract
:1. Introduction
- (1)
- The first generation is made up of the most commonly used commercial silicone-based materials, which are efficient but have a high cost;
- (2)
- The second generation comprises very thin and flexible cells with a lower efficiency than the previous one while being less expensive [24];
- (3)
- (4)
- The fourth generation is a more recently developed class of cells that use the interaction between organic and inorganic materials to obtain a greater efficiency and stability [28].
2. Materials and Methods
2.1. DSSC Fabrication and Photovoltaic Characterization
2.2. Optimization of COF Adhesion to the Photoanode
2.3. N719 Deposition on the Photoanode
2.4. Use of COF as an Additive (Interface between Dye and Photoanode)
2.5. Photoelectrochemical Measurements
2.6. Chemicals
2.7. Synthesis of Triformylphloroglucinol (TFPG)
2.8. Synthesis of RIO-60
2.9. Supercritical Drying of the Synthesized COF with CO2
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, M.G.; Atayde, E.C.; Matsagar, B.M.; Na, J.; Yamauchi, Y.; Wu, K.C.W.; Kuo, S.-W. Construction hierarchically mesoporous/microporous materials based on block copolymer and covalent organic framework. J. Taiwan Inst. Chem. Eng. 2020, 112, 180–192. [Google Scholar] [CrossRef]
- Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. An azine-linked covalent organic framework. J. Am. Chem. Soc. 2013, 135, 17310–17313. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Mahmood, J.; Noh, H.J.; Seo, J.M.; Jung, S.M.; Shin, S.H.; Im, Y.K.; Jeon, I.Y.; Baek, J.B. Direct synthesis of a covalent triazine-based framework from aromatic amides. Angew. Chem. Int. Ed. Engl. 2018, 57, 8438–8442. [Google Scholar] [CrossRef] [PubMed]
- Freitas, S.K.S.; Oliveira, F.L.; Merlini, C.; Justo, E.P.S.; Gioda, A.; Esteves, P.M. Dye-Based Covalent Organic Networks (CONs). J. Phys. Mater. 2020, 3, 025011. [Google Scholar] [CrossRef]
- Freitas, S.K.S.; Borges, R.S.; Merlini, C.; Barra, G.M.O.; Esteves, P.M. Thermal Conductivity of Covalent Organic Frameworks as a Function of Their Pore Size. J. Phys. Chem. C 2017, 121, 27247–27252. [Google Scholar] [CrossRef]
- Freitas, S.K.S.; Oliveira, F.L.; Santos, T.C.; Hiss, D.; Merlini, C.; Ronconi, C.M.; Esteves, P.M. A Carbocationic Triarylmethane-Based Porous Covalent Organic Network. Chem. Eur. J. 2021, 27, 2342–2347. [Google Scholar] [CrossRef]
- Cote, A.P. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [Green Version]
- Waller, P.J.; Gándara, F.; Yaghi, O.M. Chemistry of Covalent Organic Frameworks. Acc. Chem. Res. 2015, 48, 3053–3063. [Google Scholar] [CrossRef]
- Xia, Z.; Zhao, Y.; Darling, S.B. Covalent Organic Frameworks for Water Treatment. Adv. Mater. Interfaces 2021, 8, 2001507. [Google Scholar] [CrossRef]
- Zeng, Y.; Zou, R.; Zhao, Y. Covalent Organic Frameworks for CO2 Capture. Adv. Mater. 2016, 28, 2855–2873. [Google Scholar] [CrossRef]
- Hu, H.; Yan, Q.; Ge, R.; Gao, Y. Covalent Organic Frameworks as Heterogeneous Catalysts. Chin. J. Catal. 2018, 39, 1167–1179. [Google Scholar] [CrossRef]
- Medina, D.D.; Sick, T.; Bein, T. Photoactive and Conducting Covalent Organic Frameworks. Adv. Energy Mater. 2017, 7, 1700387. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Fan, K.; Hu, W.; Wang, C. Perspectives of Ionic Covalent Frameworks for Rechargeable Batteries. Coord. Chem. Rev. 2022, 458, 214431. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Z.; Zhu, M.; Thomas, A.; Liao, Y. Facile Synthesis of Nitrogen-Rich Porous Organic Polymers for Latent Heat Energy Storage. ACS Appl. Energy Mater. 2018, 1, 6535–6540. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, Y.; Zhu, Y.; Chen, B.; Wang, L.; Lai, Z.; Zhang, Z.; Zhao, M.; Tan, C.; Yang, N.; et al. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection. J. Am. Chem. Soc. 2017, 139, 8698–8704. [Google Scholar] [CrossRef] [Green Version]
- Das, G.; Biswal, B.P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical Sensing in Two Dimensional Porous Covalent Organic Nanosheets. Chem. Sci. 2015, 6, 3931–3939. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Dong, M.; Wang, Y.-W.; Chen, Y.-T.; Wang, H.-Z.; Su, C.-Y.; Wang, W. Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury-(II). J. Am. Chem. Soc. 2016, 138, 3031–3037. [Google Scholar] [CrossRef]
- Singh, V.; Byon, H.R. Advances in electrochemical energy storage with covalent organic frameworks. Mater. Adv. 2021, 2, 3188–3212. [Google Scholar] [CrossRef]
- Lia, L.; Lua, F.; Guoa, H.; Yanga, W. A new two-dimensional covalent organic framework with intralayer hydrogen bonding as supercapacitor electrode material. Microporous Mesoporous Mater. 2021, 312, 110766. [Google Scholar] [CrossRef]
- Carneiro, J.A.; Poswar, F.O.; Ramos, M.I.A.; Nassau, D.C.; Veloso, G.D.C. Dapsone-mediated agranulocytosis in a patient with leprosy. Case report. Rev. Bras. Clin. Med. São Paulo 2011, 9, 242–244. [Google Scholar]
- Deblase, C.R.; Silberstein, K.E.; Truong, T.-T.; Abruña, H.D.; Dichtel, W.R. β-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821–16824. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ren, J.; Zhang, G.; Zhao, Z.; Liu, S.; Zhang, W.; Chen, L. Donor-Acceptor Type Covalent Organic Frameworks. Chem. A Eur. J. 2021, 27, 10781–10797. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, Z.; Cheng, P.; Chen, Y.; Zhang, Z. Design and application of ionic covalent organic frameworks. Coord. Chem. Rev. 2021, 438, 213873. [Google Scholar] [CrossRef]
- Kibria, M.T.; Ahammed, A.; Sony, S.M.; Hossain, F.; Islam, S.U. A Review: Comparative Studies on Different Generation Solar Cells Technology. Available online: http://www.altenergy.org/renewables/solar (accessed on 6 January 2023).
- Simya, O.K.; Nair, P.R.; Ashok, A.M. Engineered Nanomaterials for Energy Applications. In Handbook of Nanomaterials for Industrial Applications; Chapter 41—Engineered Nanomaterials for Energy Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 751–767. [Google Scholar]
- Su, Y.-W.; Lin, Y.-C.; Wei, K.-H. Evolving molecular architectures of donor–acceptor conjugated polymers for photovoltaic applications: From one-dimensional to branched to two-dimensional structures. J. Mater. Chem. A 2017, 5, 24051. [Google Scholar] [CrossRef]
- Su, Y.-W.; Lan, S.-C.; Wei, K.-H. Organic Photovoltaics. Mater. Today 2012, 15, 554. [Google Scholar] [CrossRef]
- Jayawardena, K.D.G.I.; Rozanski, L.J.; Mills, C.A.; Beliatis, M.J.; Nismya, N.A.; Silva, S.R.P. Inorganics-in-Organics: Recent developments and outlook for 4G polymer solar cells. Nanoscale 2013, 5, 8411–8427. [Google Scholar] [CrossRef] [Green Version]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Ji, J.M.; Zhou, H.; Eom, Y.K.; Kim, C.H.; Kim, H.K. 14.2% Efficiency Dye-Sensitized Solar Cells by Co-sensitizing Novel Thieno [3,2- b] indole-Based Organic Dyes with a Promising Porphyrin Sensitizer. Adv. Energy Mater. 2020, 10, 2000124. [Google Scholar] [CrossRef]
- Nazeeruddin, M.K.; Liska, P.; Moser, J.; Vlachopoulos, N.; Grätzel, M. Conversion of Light into Electricity with Trinuclear Ru-thenium Complexes Adsorbed on Textured TiO, Film. Helv. Chim. Acta 1990, 73, 1788–1803. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Moser, A.J.-E.; Grätzel, M. Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. J. Phys. Chem. B 2005, 109, 14945–14953. [Google Scholar] [CrossRef] [Green Version]
- Higashino, T.; Imahori, H. Porphyrins as excellent dyes for dye-sensitized solar cells: Recent developments and insights. Dalton Trans. 2014, 44, 448–463. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.; Graetzel, M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 1993, 97, 6272–6277. [Google Scholar] [CrossRef]
- Campbell, W.M.; Jolley, K.W.; Wagner, P.; Wagner, K.; Walsh, P.J.; Gordon, K.C.; Schmidt-Mende, L.; Nazeeruddin, M.K.; Wang, Q.; Grätzel, M.; et al. Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2007, 111, 11760–11762. [Google Scholar] [CrossRef]
- Cherepy, N.J.; Smestad, G.P.; Grätzel, A.M.; Zhang, J.Z. Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode. J. Phys. Chem. B 1997, 101, 9342–9351. [Google Scholar] [CrossRef]
- Calogero, G.; Di Marco, G.; Caramori, S.; Cazzanti, S.; Argazzi, R.; Bignozzi, C.A. Natural dye senstizers for photoelectrochemical cells. Energy Environ. Sci. 2009, 2, 1162–1172. [Google Scholar] [CrossRef]
- Calogero, G.; Yum, J.-H.; Sinopoli, A.; Di Marco, G.; Grätzel, M.; Nazeeruddin, M.K. Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Sol. Energy 2012, 86, 1563–1575. [Google Scholar] [CrossRef]
- Calogero, G.; Sinopoli, A.; Citro, I.; Di Marco, G.; Petrov, V.; Diniz, A.M.; Parola, A.J.; Pina, F. Synthetic analogues of anthocyanins as sensitizers for dye-sensitized solar cells. Photochem. Photobiol. Sci. 2013, 12, 883–894. [Google Scholar] [CrossRef]
- Calogero, G.; Bartolotta, A.; Di Marco, G.; Di Carlo, A.; Bonaccorso, F. Vegetable-based dye-sensitized solar cells. Chem. Soc. Rev. 2015, 44, 3244–3294. [Google Scholar] [CrossRef]
- Pinto, A.L.; Cruz, L.; Gomes, V.; Cruz, H.; Calogero, G.; De Freitas, V.; Pina, F.; Parola, A.J.; Lima, J.C. Catechol versus carboxyl linkage impact on DSSC performance of synthetic pyranoflavylium salts. Dye. Pigment. 2019, 170, 107577. [Google Scholar] [CrossRef]
- Pinto, A.L.; Oliveira, J.; Araújo, P.; Calogero, G.; de Freitas, V.; Pina, F.; Parola, A.J.; Lima, J.C. Study of the multi-equilibria of red wine colorants pyranoanthocyanins and evaluation of their potential in dye-sensitized solar cells. Sol. Energy 2019, 191, 100–108. [Google Scholar] [CrossRef]
- Cruz, H.; Pinto, A.L.; Lima, J.C.; Branco, L.C.; Gago, S. Application of polyoxometalate-ionic liquids (POM-ILs) in dye-sensitized solar cells (DSSCs). Mater. Lett. X 2020, 6, 100033. [Google Scholar] [CrossRef]
- Kamedulski, P.; Gauden, P.A.; Lukaszewicz, J.P.; Ilnicka, A. Effective Synthesis of Carbon Hybrid Materials Containing Oligothiophene Dyes. Materials 2019, 12, 3354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashfaq, M.; Talreja, N.; Singh, N.; Chauhan, D. 2D-Nanolayer (2D-NL)-Based Hybrid Materials: A Next-Generation Material for Dye-Sensitized Solar Cells. Electronics 2023, 12, 570. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Gerbaldi, C.; Viscardi, G. Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices. Energies 2016, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Yang, W.X.; Zhang, L.; Jiang, R.; Mijangos, E.; Saygili, Y.; Hammarstrom, L.; Hagfeldt, A.; Boschloo, G. A small electron donor in cobalt complex electrolyte significantly improves efficiency in dye-sensitized solar cells. Nat. Commun. 2016, 7, 13934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saygili, Y.; Soderberg, M.; Pellet, N.; Giordano, F.; Cao, Y.M.; Munoz-Garcia, A.B.; Zakeeruddin, S.M.; Vlachopoulos, N.; Pavone, M.; Boschloo, G.; et al. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. J. Am. Chem. Soc. 2016, 138, 15087–15096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Stojanovic, M.; Ren, Y.M.; Cao, Y.M.; Eickemeyer, F.T.; Socie, E.; Vlachopoulos, N.; Moser, J.E.; Zakeeruddin, S.M.; Hagfeldt, A. A molecular photosensitizer achieves a V-oc of 1.24V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nat. Commun. 2021, 12, 1777. [Google Scholar] [CrossRef]
- Xiang, W.C.; Huang, W.C.; Bach, U.; Spiccia, L. Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte. Chem. Commun. 2013, 49, 8997–8999. [Google Scholar] [CrossRef]
- Hwang, D.K.; Nam, J.E.; Jo, H.J.; Sung, S.J. Quasi-solid-state electrolyte for semi-transparent bifacial dye-sensitized solar cell with over 10% power conversion efficiency. J. Power Sources 2017, 361, 87–95. [Google Scholar] [CrossRef]
- Buraidah, M.H.; Shah, S.; Teo, L.P.; Chowdhury, F.I.; Careem, M.A.; Albinsson, I.; Mellander, B.E.; Arof, A.K. High efficient dye sensitized solar cells using phthaloylchitosan based gel polymer electrolytes. Electrochim. Acta 2017, 245, 846–853. [Google Scholar] [CrossRef]
- Pujiarti, H.; Pangestu, Z.A.; Sholeha, N.; Nasikhudin, N.; Diantoro, M.; Utomo, J.; Aziz, M.S.A. The Effect of Acetylene Carbon Black (ACB) Loaded on Polyacrylonitrile (PAN) Nanofiber Membrane Electrolyte for DSSC Applications. Micromachines 2023, 14, 394. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, B.; Liu, P.; Hu, Y.; Kloo, L.; Hua, J.L.; Sun, L.C.; Tian, H. Molecular engineering of D-A-pi-A sensitizers for highly efficient solid-state dye-sensitized solar cells. J. Mater. Chem. A 2017, 5, 3157–3166. [Google Scholar] [CrossRef]
- Cao, Y.M.; Saygili, Y.; Ummadisingu, A.; Teuscher, J.; Luo, J.S.; Pellet, N.; Giordano, F.; Zakeeruddin, S.M.; Moser, J.E.; Freitag, M.; et al. 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nat. Commun. 2017, 8, 15390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef]
- Cruz, H.; Pinto, A.L.; Jordão, N.; Neves, L.A.; Branco, L.C. Alkali Iodide Deep Eutectic Solvents as Alternative Electrolytes for Dye Sensitized Solar Cells. Sustain. Chem. 2021, 2, 222–236. [Google Scholar] [CrossRef]
- Paninho, A.B.; Barbosa, C.; Nogueira, I.D.; Najdanovic-Visak, V.; Nunes, A.V.M. (Ethyl lactate)-gel high pressure CO2 extration for the processing of mesoporous gelatine particles. J. Supercrit. Fluids 2013, 83, 35–40. [Google Scholar] [CrossRef]
- Yildirim, O.; Bonomo, M.; Barbero, N.; Atzori, C.; Civalleri, B.; Bonino, F.; Viscardi, G.; Barolo, C. Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies 2020, 13, 5602. [Google Scholar] [CrossRef]
Parameters | BBY | DAPSO | DAAQ | TFPG | N719 |
---|---|---|---|---|---|
FF * | 0.52 ± 0.00 | 0.49 ± 0.02 | 0.41 ± 0.08 | 0.60 ± 0.00 | 0.59 ± 0.01 |
η (%) * | 0.05 ± 0.00 | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.41 ± 0.00 | 3.06 ± 0.41 |
Voc (mV) * | 295 ± 4 | 299 ± 36 | 300 ± 36 | 317 ± 5 | 432 ± 20 |
Jsc (mA/cm2) * | 0.33 ± 0.00 | 0.21 ± 0.03 | 0.30 ± 0.01 | 2.12 ± 0.05 | 11.88 ± 1.09 |
Parameters | RIO-70 | RIO-43 | RIO-55 | RIO-60 | COF-DAAQ |
---|---|---|---|---|---|
FF * | 0.43 ± 0.00 | 0.28 ± 0.00 | 0.62 ± 0.01 | 0.59 ± 0.00 | 0.62 ± 0.00 |
η (%) * | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.03 ± 0.00 | 0.18 ± 0.01 | 0.07 ± 0.00 |
Voc (mV) * | 263 ± 3 | 44 ± 0 | 339 ± 1 | 286 ± 1 | 424 ± 3 |
Jsc (mA/cm2) * | 0.10 ± 0.00 | 0.02 ± 0.00 | 0.15 ± 0.00 | 1.04 ± 0.02 | 0.25 ± 0.00 |
Parameters | RIO-55 | RIO-60 | COF-DAAQ |
---|---|---|---|
FF * | 0.51 ± 0.02 | 0.59 ± 0.02 | 0.59 ± 0.01 |
η (%) * | 0.05 ± 0.01 | 0.19 ± 0.00 | 0.11 ± 0.00 |
Voc (mV) * | 284 ± 2 | 329 ± 7 | 307 ± 2 |
Jsc (mA/cm2) * | 0.37 ± 0.07 | 1.00 ± 0.01 | 0.60 ± 0.01 |
Deposition Time | Batch 1 (½ h for RIO-60 Formation) | Batch 2 (2 h for RIO-60 Formation) | Batch 3 (24 h for RIO-60 Formation) |
---|---|---|---|
30 min | B1G1 | B2G1 | B3G1 |
5 h | B1G2 | B2G2 | B3G2 |
24 h | B1G3 | B2G3 | B3G3 |
Parameters | B1G1 | B1G2 | B1G3 | B2G1 | B2G2 | B2G3 | B3G1 | B3G2 | B3G3 |
---|---|---|---|---|---|---|---|---|---|
FF * | 0.58 ± 0.00 | 0.60 ± 0.01 | 0.59 ± 0.00 | 0.60 ± 0.00 | 0.61 ± 0.01 | 0.61 ± 0.01 | 0.58 ± 0.01 | 0.55 ± 0.04 | 0.52 ± 0.02 |
η (%) * | 0.13 ± 0.03 | 0.13 ± 0.01 | 0.07 ± 0.00 | 0.14 ± 0.00 | 0.10 ± 0.00 | 0.09 ± 0.00 | 0.11 ± 0.00 | 0.09 ± 0.01 | 0.03 ± 0.00 |
Voc (mV) * | 274 ± 1 | 278 ± 12 | 268 ± 3 | 301 ± 0 | 281 ± 8 | 305 ± 5 | 274 ± 13 | 262 ± 8 | 283 ± 17 |
Jsc(mA/cm2) * | 0.84 ± 0.18 | 0.77 ± 0.03 | 0.42 ± 0.00 | 0.79 ± 0.01 | 0.61 ± 0.01 | 0.48 ± 0.01 | 0.70 ± 0.05 | 0.63 ± 0.03 | 0.20 ± 0.00 |
Parameters | B1G1+N719 (2 h) | B1G2+N719 (2 h) | B2G1+N719 (2 h) | N719 (2 h) |
---|---|---|---|---|
FF * | 0.59 ± 0.03 | 0.52 ± 0.06 | 0.61 ± 0.07 | 0.56 ± 0.02 |
η (%) * | 0.74 ± 0.03 | 0.93 ± 0.13 | 1.74 ± 0.43 | 2.24 ± 0.05 |
Voc (mV) * | 386 ± 7 | 395 ± 9 | 378 ± 5 | 417 ± 5 |
Jsc(mA/cm2) * | 3.26 ± 0.08 | 4.49 ± 0.28 | 7.61 ± 1.39 | 9.66 ± 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inácio, D.; Pinto, A.L.; Paninho, A.B.; Branco, L.C.; Freitas, S.K.S.; Cruz, H. Application of Covalent Organic Frameworks (COFs) as Dyes and Additives for Dye-Sensitized Solar Cells (DSSCs). Nanomaterials 2023, 13, 1204. https://doi.org/10.3390/nano13071204
Inácio D, Pinto AL, Paninho AB, Branco LC, Freitas SKS, Cruz H. Application of Covalent Organic Frameworks (COFs) as Dyes and Additives for Dye-Sensitized Solar Cells (DSSCs). Nanomaterials. 2023; 13(7):1204. https://doi.org/10.3390/nano13071204
Chicago/Turabian StyleInácio, Diogo, Ana Lucia Pinto, Ana B. Paninho, Luis C. Branco, Sunny K. S. Freitas, and Hugo Cruz. 2023. "Application of Covalent Organic Frameworks (COFs) as Dyes and Additives for Dye-Sensitized Solar Cells (DSSCs)" Nanomaterials 13, no. 7: 1204. https://doi.org/10.3390/nano13071204
APA StyleInácio, D., Pinto, A. L., Paninho, A. B., Branco, L. C., Freitas, S. K. S., & Cruz, H. (2023). Application of Covalent Organic Frameworks (COFs) as Dyes and Additives for Dye-Sensitized Solar Cells (DSSCs). Nanomaterials, 13(7), 1204. https://doi.org/10.3390/nano13071204