A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials
Abstract
:1. Introduction
2. Optoelectrical Application Based on TiO2 Devices
2.1. UV Photodetector
2.1.1. UV Photodetectors Based on Nanoparticle Structures
2.1.2. UV Photodetectors Based on One-Dimensional Nanomaterials
2.1.3. UV Photodetectors Based on Two-Dimensional Nanomaterials
2.2. Light-Emitting Diodes (LEDs)
2.3. Sensing Applications
2.3.1. Biosensor
2.3.2. Gas Sensor
2.3.3. Electrochemical Sensor
2.4. Transistors
2.4.1. Junction-Type Field-Effect Transistors
2.4.2. Insulated Gate Field Effect Transistors
2.5. Memory Applications
2.5.1. Thin-Film Structured Memory
2.5.2. Non-Film Structured Memory
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gu, P.; Zhu, X.; Wu, H.; Li, J.; Yang, D. Influence of oxygen vacancy on the response properties of TiO2 ultraviolet detectors. J. Alloys Compd. 2019, 779, 821–830. [Google Scholar] [CrossRef]
- Fang, X.M.; Li, X.; Jia, J. Fabrication and Properties of Ultraviolet Detector Based on Ag-modified TiO2 Nanotubes. Acta Photon. Sin. 2019, 48, 0604003. [Google Scholar] [CrossRef]
- Cadatal-Raduban, M.; Kato, T.; Horiuchi, Y.; Olejníček, J.; Kohout, M.; Yamanoi, K.; Ono, S. Effect of Substrate and Thickness on the Photoconductivity of Nanoparticle Titanium Dioxide Thin Film Vacuum Ultraviolet Photoconductive Detector. Nanomaterials 2021, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Tuokedaerhan, K.; Zhang, H.-Y.; Li, L. Ultraviolet photodetector based on Au doped TiO2 nanowires array with low dark current. Optoelectron. Lett. 2019, 15, 81–84. [Google Scholar] [CrossRef]
- Li, Y.; Kuang, D.; Gao, Y.; Cheng, J.; Li, X.; Guo, J.; Yu, Z. Titania: Graphdiyne nanocomposites for high-performance deep ultraviolet photodetectors based on mixed-phase MgZnO. J. Alloys Compd. 2020, 825, 153882. [Google Scholar] [CrossRef]
- Zheng, W.; Dong, Y.; Li, T.; Chen, J.; Chen, X.; Dai, Y.; He, G. MgO blocking layer induced highly UV responsive TiO2 nanoparticles based self-powered photodetectors. J. Alloys Compd. 2021, 869, 159299. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Shaban, M.; Aly, A.H.; Ahmed, A.M.; Rabia, M. Preparation and characterization of a high-efficiency photoelectric detector composed of hexagonal Al2O3/TiO2/TiN/Au nanoporous array. Mater. Sci. Semicond. Process. 2022, 139, 106348. [Google Scholar] [CrossRef]
- Gao, X.D.; Fei, G.T.; Xu, S.H.; Zhong, B.N.; Ouyang, H.M.; Li, X.H.; De Zhang, L. Porous Ag/TiO2-Schottky-diode based plasmonic hot-electron photodetector with high detectivity and fast response. Nanophotonics 2019, 8, 1247–1254. [Google Scholar] [CrossRef]
- Yang, D.; Ren, Y.; Du, F.; Hu, P.; Jiao, Y.; Teng, F.; Fan, H. Enhanced response speed of TiO2 nanoarrays based all solid-state ultraviolet photodetector via SiO2 dielectric layer. J. Alloys Compd. 2021, 867, 159053. [Google Scholar] [CrossRef]
- Huang, Z.; Ji, C.; Cheng, L.; Han, J.; Yang, M.; Wei, X.; Jiang, Y.; Wang, J. Zero-Bias Visible to Near-Infrared Horizontal pnp TiO2 Nanotubes Doped Monolayer Graphene Photodetector. Molecules 2019, 24, 1870. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Abdiryim, T.; Jamal, R.; Li, J.; Liu, H.; Kadir, A.; Zou, D.; Che, Y.; Serkjan, N. Self-powered TiO2 NRs UV photodetectors: Heterojunction with PTTh and enhanced responsivity by Au nanoparticles. J. Alloys Compd. 2022, 899, 163279. [Google Scholar] [CrossRef]
- Cadatal-Raduban, M.; Yamanoi, K.; Olejníček, J.; Kohout, M.; Kato, S.; Horiuchi, Y.; Kato, T.; Haoze, Y.; Sarukura, N.; Ono, S. Titanium dioxide thin films as vacuum ultraviolet photoconductive detectors with enhanced photoconductivity by gamma-ray irradiation. Thin Solid Films 2021, 726, 138637. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Z.; Zhao, Y.; Wu, Z.; Zhang, J.; Yang, L.; Wang, S.; Li, S. Solar-Blind Photodetector Based on NaTaO3/TiO2 Composite Film with Enhanced Photoelectric Performance. Coatings 2021, 11, 1178. [Google Scholar] [CrossRef]
- Ezhilmaran, B.; Dhanasekar, M.; Bhat, S. Solution processed transparent anatase TiO2 nanoparticles/MoO3 nanostructures heterojunction: High performance self-powered UV detector for low-power and low-light applications. Nanoscale Adv. 2021, 3, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Nejadzangeneh, M.; Ghorashi, S.; Ghasemi, M. Simulation and optimization of green organic light emitting diode based on TiO2/Ag/MoO3 multilayer electrode. Opt. Laser Technol. 2021, 143, 107290. [Google Scholar] [CrossRef]
- Will, P.; Schmidt, M.; Eckhardt, K.; Wisser, F.; Lenk, S.; Grothe, J.; Kaskel, S.; Reineke, S. Efficiency of Light Outcoupling Structures in Organic Light-Emitting Diodes: 2D TiO2 Array as a Model System. Adv. Funct. 2019, 29, 1901748. [Google Scholar] [CrossRef]
- Abdelhamid, E.; Walid, I.; Mahmoud, A. Towards low-cost fabrication of inorganic white light emitting diode based on electrodeposited Cu2O thin film/TiO2 nanorods heterojunction. Mater. Res. Bull. 2019, 116, 111–116. [Google Scholar]
- Al-Asbahi, B.A.; Qaid, S.M.; Ghaithan, H.M.; Farooq, W.A. Enhancing the optical and optoelectronic properties of MEH-PPV-based light-emitting diodes by adding SiO2/TiO2 nanocomposites. J. Non-Cryst. Solids 2021, 552, 120429. [Google Scholar] [CrossRef]
- Lee, G.J.; Hong, I.Y.; Kim, T.K.; Park, H.J.; Oh, S.K.; Cha, Y.J.; Park, M.J.; Choi, K.J.; Kwak, J.S. Design of ITO/SiO2/TiO2 distributed Bragg reflectors as a p-type electrode in GaN-based flip-chip light emitting diodes. Appl. Surf. Sci. 2019, 477, 220–225. [Google Scholar] [CrossRef]
- Su, H.; Sun, H.; Zhang, Y.; Yang, Y.; Shi, X.; Guo, Z. Luminescence of perovskite light-emitting diodes with quasi-core/shell structure enhanced by Al–TiO2–Ag Bimetallic Nanoparticle. Superlattices Microstruct. 2019, 136, 106323. [Google Scholar] [CrossRef]
- Song, G.Y.; Jang, I.; Jeon, S.-W.; Ahn, S.-H.; Kim, J.-Y.; Kim, S.Y.; Sa, G. Controlling the Surface Properties of TiO2 for Improvement of the Photo-performance and Color Uniformity of the Light-emitting Diode Devices. J. Ind. Eng. Chem. 2021, 94, 180–187. [Google Scholar] [CrossRef]
- Ashery, A.; Gad, S.A.; Turky, G.M.; Gaballah, A.E.H. Negative capacitance, negative resistance in CNT/TiO2/SiO2/p-Si heterostructure for light-emitting diode applications. ECS J. Solid State Sci. Technol. 2021, 10, 031006. [Google Scholar] [CrossRef]
- Kim, M.G.; Shin, J.S.; Ma, J.H.; Jeong, J.H.; Han, D.H.; Kim, B.-S.; Jeon, W.; Park, Y.; Kang, S.J. An Al-doped TiO2 interfacial layer for effective hole injection characteristics of quantum-dot light-emitting diodes. J. Mater. Chem. C 2022, 10, 7294–7303. [Google Scholar] [CrossRef]
- Kim, M.; Lee, N.; Yang, J.H.; Han, C.W.; Kim, H.-M.; Han, W.; Park, H.-H.; Yang, H.; Kim, J. High-efficiency quantum dot light-emitting diodes based on Li-doped TiO2 nanoparticles as an alternative electron transport layer. Nanoscale 2021, 13, 2838–2842. [Google Scholar] [CrossRef]
- Lee, S.Y.; Moon, J.H.; Moon, Y.T.; Choi, B.; Oh, J.T.; Jeong, H.H.; Seong, T.-Y.; Amano, H. Using SiO2-based distributed Bragg reflector to improve the performance of AlGaInP-based red micro-light emitting diode. ECS J. Solid State Sci. Technol. 2020, 9, 036002. [Google Scholar] [CrossRef]
- Ognjanović, M.; Stanković, V.; Knežević, S.; Antić, B.; Vranješ-Djurić, S.; Stanković, D.M. TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. Microchem. J. 2020, 158, 105150. [Google Scholar] [CrossRef]
- Yoo, J.; Jeong, H.; Park, S.; Park, S.; Lee, J. Interdigitated electrode biosensor based on plasma-deposited TiO2 nanoparticles for detecting dna. Biosensors 2021, 11, 212. [Google Scholar] [CrossRef]
- Meesombad, K.; Sato, N.; Pitiphattharabun, S.; Panomsuwan, G.; Techapiesancharoenkij, R.; Surawathanawises, K.; Wongchoosuk, C.; Boonsalee, S.; Pee, J.; Jongprateep, O. Zn-doped TiO2 nanoparticles for glutamate sensors. Ceram. Int. 2021, 47, 21099–21107. [Google Scholar] [CrossRef]
- Khaliq, N.; Rasheed, M.A.; Cha, G.; Khan, M.; Karim, S.; Schmuki, P.; Ali, G. Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles. Sens. Actuators B Chem. 2020, 302, 127200. [Google Scholar] [CrossRef]
- Huang, S.; Wu, C.; Wang, Y.; Yang, X.; Yuan, R.; Chai, Y. Ag/TiO2 nanocomposites as a novel SERS substrate for construction of sensitive biosensor. Sens. Actuators B Chem. 2021, 339, 129843. [Google Scholar] [CrossRef]
- Xu, C.; Thakur, A.; Li, Z.; Yang, T.; Zhao, C.; Li, Y.; Lee, Y.; Wu, C.M.L. Determination of glioma cells’ malignancy and their response to TMZ via detecting exosomal BIGH3 by a TiO2-CTFE-AuNIs plasmonic biosensor. Chem. Eng. J. 2021, 415, 128948. [Google Scholar] [CrossRef]
- Jeong, H.; Yoo, J.; Park, S.; Lu, J.; Park, S.; Lee, J. Non-Enzymatic Glucose Biosensor Based on Highly Pure TiO2 Nanoparticles. Biosensors 2021, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, W.; Guo, H.; Ge, L.; Tu, J.; Zhen, C. Constructing a TiO2/PDA core/shell nanorod array electrode as a highly sensitive and stable photoelectrochemical glucose biosensor. RSC Adv. 2020, 10, 10017–10022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Li, S.; Guo, W.; Zhang, F.; Qu, F. A covalent organic polymer–TiO2/Ti3C2 heterostructure as nonenzymatic biosensor for voltammetric detection of dopamine and uric acid. Mikrochim. Acta 2021, 188, 95. [Google Scholar] [CrossRef]
- Yang, W.; Xu, W.; Zhang, N.; Lai, X.; Peng, J.; Cao, Y.; Tu, J. TiO2 nanotubes modified with polydopamine and graphene quantum dots as a photochemical biosensor for the ultrasensitive detection of glucose. J. Mater. Sci. 2020, 55, 6105–6117. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, L.; Wu, J.; Li, N.; He, N.; Zhao, H.; Wu, Q.; Li, X. Perovskite-SrTiO3/TiO2/PDA as photoelectrochemical glucose biosensor. Ceram. Int. 2021, 47, 29807–29814. [Google Scholar] [CrossRef]
- Noh, J.; Kwon, S.H.; Park, S.; Kim, K.K.; Yoon, Y.J. TiO2 nanorods and Pt nanoparticles under a UV-LED for an NO2 gas sensor at room temperature. Sensors 2021, 21, 1826. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, P.; Wang, B.; Wang, Y. Flame-annealed porous TiO2/CeO2 nanosheets for enhanced CO gas sensors. Appl. Surf. Sci. 2022, 593, 153418. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, H.; Li, F.; Yu, S.; Chen, Y. High-performance ammonia gas detection based on TiO2/WO3· H2O heterojunction sensor. Mater. Chem. Phys. 2021, 273, 125098. [Google Scholar] [CrossRef]
- Li, H.; Wu, C.-H.; Liu, Y.-C.; Yuan, S.-H.; Chiang, Z.-X.; Zhang, S.; Wu, R.-J. Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sens. Actuators B Chem. 2021, 341, 130035. [Google Scholar] [CrossRef]
- Cao, S.; Sui, N.; Zhang, P.; Zhou, T.; Tu, J.; Zhang, T. TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. J. Colloid Interface Sci. 2022, 607, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, D.; Mi, Q. A high-performance room temperature benzene gas sensor based on CoTiO3 covered TiO2 nanospheres decorated with Pd nanoparticles. Sens. Actuators B Chem. 2022, 350, 130830. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.; Chen, Z.; Zuo, X. Innovative Electrochemical Sensor Using TiO2 Nanomaterials to Detect Phosphopeptides. Anal. Chem. 2021, 93, 10635–10643. [Google Scholar] [CrossRef]
- Amri, F.; Bonardo, D.; Rezki, M.; Septiani, N.L.W.; Iqbal, M.; Syarif, D.G.; Nugraha; Yuliarto, B. Polyvinylpyrrolidone (PVP)-Assisted Solvothermal Synthesis of Mesoporous TiO2 Nanoparticles as an Active Material for Enzymatic Electrochemical Glucose Sensor. J. Electrochem. Soc. 2021, 168, 117503. [Google Scholar] [CrossRef]
- Kusior, A.; Karoń, I.; Radecka, M. Electrochemical sensors based on TiO2–Fe2O3 coupled system. Metrol. Meas. Syst. 2020, 27, 301–311. [Google Scholar] [CrossRef]
- Li, G.; Wu, J.; Jin, H.; Xia, Y.; Liu, J.; He, Q.; Chen, D. Titania/electro-reduced graphene oxide nanohybrid as an efficient electrochemical sensor for the determination of allura red. Nanomaterials 2020, 10, 307. [Google Scholar] [CrossRef] [Green Version]
- Geng, H.; Chen, X.; Sun, L.; Qiao, Y.; Song, J.; Shi, S.; Cai, Q. ZnCuInSe/Au/TiO2 sandwich nanowires-based photoelectrochemical biosensor for ultrasensitive detection of kanamycin. Anal. Chim. Acta 2021, 1146, 166–173. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Z.; Qiu, T.; Ning, H.; Zhong, J.; Li, M.; Luo, D.; Liu, X.; Yao, R.; Peng, J. High k PVP titanium dioxide composite dielectric with low leakage current for thin film transistor. Org. Electron. 2022, 101, 106413. [Google Scholar] [CrossRef]
- Nakayama, N.; Hayashi, T. Preparation and characterization of poly (l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym. Degrad. Stab. 2007, 92, 1255–1264. [Google Scholar] [CrossRef]
- Tetteh, E.; Rathilal, S.; Asante-Sackey, D.; Chollom, M. Prospects of synthesized Magnetic TiO2-based membranes for wastewater treatment: A review. Materials 2021, 14, 3524. [Google Scholar] [CrossRef]
- Karpuraranjith, M.; Chen, Y.; Rajaboopathi, S.; Ramadoss, M.; Srinivas, K.; Yang, D.; Wang, B. Three-dimensional porous MoS2 nanobox embedded g-C3N4@ TiO2 architecture for highly efficient photocatalytic degradation of organic pollutant. J. Colloid Interface Sci. 2022, 605, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Y.; Wang, M.; Zhao, M.; Xue, J.; Chen, J.; Wu, T.; Chambers, S.A. Recent Progress on Titanium Sesquioxide: Fabrication, Properties, and Applications. Adv. Funct. 2022, 32, 2203491. [Google Scholar] [CrossRef]
- Nguyen, N.A.; Schneegans, O.; Salot, R.; Lamy, Y.; Giapintzakis, J.; Mai, V.H.; Oukassi, S. An Ultralow Power LixTiO2-Based Synaptic Transistor for Scalable Neuromorphic Computing. Adv. Electron. Mater. 2022, 8, 2200607. [Google Scholar] [CrossRef]
- Gakhar, T.; Hazra, A. p-TiO2/GO heterojunction-based VOC sensors: A new approach to amplify sensitivity in FET structure at optimized gate voltage. Measurement 2021, 182, 109721. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Q.; Chen, C.; Xu, J.; Jiang, L.; Feng, C.; Xiao, H.; Xu, X.; Wang, X. TiO2 insertion layer deposited before passivation to reduce etch damage on AlGaN/GaN HEMT. Jpn. J. Appl. Phys. 2022, 61, 086503. [Google Scholar] [CrossRef]
- Qi, H.; Wu, Y. Synaptic plasticity of TiO2 nanowire transistor. Microelectron. Int. 2020, 37, 125–130. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, K.; Sun, L.; Ni, Y.; Liu, L.; Xu, W.; Yang, L.; Xu, W. Selective Release of Different Neurotransmitters Emulated by a p–i–n Junction Synaptic Transistor for Environment-Responsive Action Control. Adv. Mater. 2021, 33, 2007350. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; George, B.; Bobbara, S.R.; Valitova, I.; Ruggeri, I.; Borghi, F.; Podestà, A.; Milani, P.; Soavi, F.; Santato, C.; et al. Ion-gated transistors based on porous and compact TiO2 films: Effect of Li ions in the gating medium. AIP Adv. 2020, 10, 065314. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, M.; Sales, M.G.; Zhao, Y.; Lin, G.; Cui, P.; Santiwipharat, C.; Ni, C.; McDonnell, S.; Zeng, Y. Impact of ZrO2 Dielectrics Thickness on Electrical Performance of TiO2 Thin Film Transistors with Sub-2 V Operation. ACS Appl. Electron. Mater. 2021, 3, 5483–5495. [Google Scholar] [CrossRef]
- Yokoyama, K.; Kuddus, A.; Hossain, M.F.; Shirai, H. Mesh Bias Controlled Synthesis of TiO2 and Al0. 74Ti0. 26O3 Thin Films by Mist Chemical Vapor Deposition and Applications as Gate Dielectric Layers for Field-Effect Transistors. ACS Appl. Electron. Mater. 2022, 4, 2516–2524. [Google Scholar] [CrossRef]
- Jung, J.H.; Cho, M.S.; Jang, W.D.; Lee, S.H.; Jang, J.; Bae, J.H.; Kang, I.M. Recessed-Gate GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistor Using a Dual Gate-Insulator Employing TiO2/SiN. J. Nanosci. Nanotechnol. 2020, 20, 4678–4683. [Google Scholar] [CrossRef]
- Pal, N.; Pandey, U.; Biring, S.; Pal, B.N. Solution processed low-voltage metal-oxide transistor by using TiO2/Li–Al2O3 stacked gate dielectric. J. Mater. Sci. Mater. Electron. 2022, 33, 9580–9589. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Cui, P.; Lin, G.; Ni, C.; Zeng, Y. One-Volt TiO₂ Thin Film Transistors with Low-Temperature Process. IEEE Electron Device Lett. 2021, 42, 521–524. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, G.; Cui, P.; Jia, M.; Li, Z.; Gundlach, L.; Zeng, Y. Enhancement-/depletion-mode TiO2 thin-film transistors via O2/N2 preannealing. IEEE Trans. Electron Devices 2020, 67, 2346–2351. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, T.; Liu, B.; Zhang, L.; Chen, H.; Fan, X.; Sun, Z. Self-rectifying and forming-free nonvolatile memory behavior in single-crystal TiO2 nanowire memory device. J. Alloys Compd. 2021, 858, 157749. [Google Scholar] [CrossRef]
- Xue, D.; Song, H.; Zhong, X.; Wang, J.; Zhao, N.; Guo, H.; Cong, P. Flexible resistive switching device based on the TiO2 nanorod arrays for non-volatile memory application. J. Alloys Compd. 2020, 822, 153552. [Google Scholar] [CrossRef]
- Alsaiari, M.A.; Alhemiary, N.A.; Umar, A.; Hayden, B.E. Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random-access memory (ReRAM) device application. Ceram. Int. 2020, 46, 16310–16320. [Google Scholar] [CrossRef]
- More, K.D.; Narwade, V.N.; Halge, D.I.; Dadge, J.W.; Bogle, K.A. Enhanced performance and reduction in operating voltage of TiO2 thin film based resistive switching memory under optical stimulus. Phys. B Condens. Matter 2020, 595, 412339. [Google Scholar] [CrossRef]
- Quiroz, H.; Calderón, J.; Dussan, A. Magnetic switching control in Co/TiO2 bilayer and TiO2: Co thin films for magnetic-resistive random-access memories (M-RRAM). J. Alloys Compd. 2020, 840, 155674. [Google Scholar] [CrossRef]
- Yang, J.; Cho, H.; Ryu, H.; Ismail, M.; Mahata, C.; Kim, S. Tunable synaptic characteristics of a Ti/TiO2/Si memory device for reservoir computing. ACS Appl. Mater. Interfaces 2021, 13, 33244–33252. [Google Scholar] [CrossRef]
- Yan, Y.; Li, J.C.; Chen, Y.T.; Wang, X.Y.; Cai, G.R.; Park, H.W.; Kim, J.H.; Zhao, J.S.; Hwang, C.S. Area-Type Electronic Bipolar Switching Al/TiO1. 7/TiO2/Al Memory with Linear Potentiation and Depression Characteristics. ACS Appl. Mater. Interfaces 2021, 13, 39561–39572. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Han, W.; Wang, H. Resistive switching and synaptic learning performance of a TiO2 thin film-based device prepared by sol–gel and spin coating techniques. Nanotechnology 2020, 31, 155202. [Google Scholar] [CrossRef]
- Cho, H.; Kim, S. Short-Term Memory Dynamics of TiN/Ti/TiO2/SiOx/Si Resistive Random-Access Memory. Nanomaterials 2020, 10, 1821. [Google Scholar] [CrossRef]
- Heo, K.J.; Kim, H.S.; Lee, J.Y.; Kim, S.J. Filamentary resistive switching and capacitance-voltage characteristics of the a-IGZO/TiO2 memory. Sci. Rep. 2020, 10, 9276. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Li, J.; Liu, C.; Yang, S.; Yan, F. Trap-assisted charge storage in titania nanocrystals toward optoelectronic nonvolatile memory. Nano Lett. 2020, 21, 723–730. [Google Scholar] [CrossRef]
- Kumari, A.; Shanbogh, S.M.; Udachyan, I.; Kandaiah, S.; Roy, A.; Varade, V.; Ponnam, A. Interface-driven multifunctionality in two-dimensional TiO2 nanosheet/poly (dimercaptothiadiazole-triazine) hybrid resistive random access memory device. ACS Appl. Mater. Interfaces 2020, 12, 56568–56578. [Google Scholar] [CrossRef] [PubMed]
- Bamola, P.; Singh, B.; Bhoumik, A.; Sharma, M.; Dwivedi, C.; Singh, M.; Dalapati, G.K.; Sharma, H. Mixed-Phase TiO2 Nanotube–Nanorod Hybrid Arrays for Memory-Based Resistive Switching Devices. ACS Appl. Nano Mater. 2020, 3, 10591–10604. [Google Scholar] [CrossRef]
- Pandey, A.; Deb, P.; Dhar, J. Ag nanoparticles capped TiO2 nanowires array based capacitive memory. J. Mater. Sci. Mater. Electron. 2021, 32, 21611–21619. [Google Scholar] [CrossRef]
- Bogle, K.A.; Cheng, X.; Rana, A.S.; Valanoor, N. Bi-Doped Single-Crystalline (001) Epitaxial TiO2 Anatase Nanostructures for Resistive Random Access Memory Applications. ACS Appl. Nano Mater. 2020, 3, 1706–1712. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, S.; Sang, D.; Zou, L.; Yao, Y.; Zhou, C.; Fu, H.; Xi, H.; Fan, J.; Meng, L.; Wang, C. A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials. Nanomaterials 2023, 13, 1141. https://doi.org/10.3390/nano13071141
Ge S, Sang D, Zou L, Yao Y, Zhou C, Fu H, Xi H, Fan J, Meng L, Wang C. A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials. Nanomaterials. 2023; 13(7):1141. https://doi.org/10.3390/nano13071141
Chicago/Turabian StyleGe, Shunhao, Dandan Sang, Liangrui Zou, Yu Yao, Chuandong Zhou, Hailong Fu, Hongzhu Xi, Jianchao Fan, Lijian Meng, and Cong Wang. 2023. "A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials" Nanomaterials 13, no. 7: 1141. https://doi.org/10.3390/nano13071141
APA StyleGe, S., Sang, D., Zou, L., Yao, Y., Zhou, C., Fu, H., Xi, H., Fan, J., Meng, L., & Wang, C. (2023). A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials. Nanomaterials, 13(7), 1141. https://doi.org/10.3390/nano13071141