Controlling the Carrier Injection Efficiency in 3D Nanocrystalline Silicon Floating Gate Memory by Novel Design of Control Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bez, R.; Camerlenghi, E.; Modelli, A.; Visconti, A. Introduction to flash memory. Proc. IEEE 2003, 91, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Pavan, P.; Bez, R.; Olivo, P.; Zanoni, E. Flash memory cells-an overview. Proc. IEEE 1997, 85, 1248–1271. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Xu, F.; Wang, B.; Gao, B.; Wu, H.; Qian, H.; Yu, S. Three-Dimensional nand Flash for Vector–Matrix Multiplication. IEEE Trans. Large Scale Integr. (VLSI) Syst. 2019, 27, 988–991. [Google Scholar] [CrossRef]
- Lee, G.H.; Hwang, S.; Yu, J.; Kim, H. Architecture and process integration overview of 3D NAND flash technologies. Appl. Sci. 2021, 11, 6703. [Google Scholar] [CrossRef]
- Park, J.K.; Kim, S.E. A Review of Cell Operation Algorithm for 3D NAND Flash Memory. Appl. Sci. 2022, 12, 10697. [Google Scholar] [CrossRef]
- Govoreanu, B.; Brunco, D.; Van Houdt, J. Scaling down the interpoly dielectric for next generation flash memory: Challenges and opportunities. Solid-State Electron. 2005, 49, 1841–1848. [Google Scholar] [CrossRef]
- Tan, Y.-N.; Chim, W.-K.; Cho, B.J.; Choi, W.-K. Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer. IEEE Trans. Electron. Devices 2004, 51, 1143–1147. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, M.; Moon, T.; Kim, S. Flexible nano-floating-gate memory with channels of enhancement-mode Si nanowires. IEEE Trans. Electron. Devices 2012, 59, 2939–2942. [Google Scholar] [CrossRef]
- Tiwari, S.; Rana, F.; Hanafi, H.; Hartstein, A.; Crabbé, E.F.; Chan, K. A silicon nanocrystals based memory. Appl. Phys. Lett. 1996, 68, 1377–1379. [Google Scholar] [CrossRef] [Green Version]
- Naito, S.; Ueyama, T.; Kondo, H.; Sakashita, M.; Sakai, A.; Ogawa, M.; Zaima, S. Fabrication and evaluation of floating gate memories with surface-nitrided Si nanocrystals. Jpn. J. Appl. Phys. 2005, 44, 5687. [Google Scholar] [CrossRef]
- Qian, X.-Y.; Chen, K.-J.; Ma, Z.-Y.; Zhang, X.-G.; Fang, Z.-H.; Liu, G.-Y.; Jiang, X.-F.; Huang, X.-F. Performance improvement of nc-Si nonvolatile memory by novel design of tunnel and control layer. In Proceedings of the 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, 1–4 November 2010; pp. 944–946. [Google Scholar]
- Velampati, R.S.R.; Hasaneen, E.-S.; Heller, E.; Jain, F.C. Floating gate nonvolatile memory using individually cladded monodispersed quantum dots. IEEE Trans. Large Scale Integr. (VLSI) Syst. 2017, 25, 1774–1781. [Google Scholar] [CrossRef]
- Muraguchi, M.; Sakurai, Y.; Takada, Y.; Shigeta, Y.; Ikeda, M.; Makihara, K.; Miyazaki, S.; Nomura, S.; Shiraishi, K.; Endoh, T. Collective electron tunneling model in si-nano dot floating gate MOS structure. In Key Engineering Materials; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2011; pp. 48–53. [Google Scholar]
- Yang, J.S.; Kim, S.-I.; Kim, Y.T.; Cho, W.J.; Park, J.H. Electrical characteristics of nano-crystal Si particles for nano-floating gate memory. Microelectron. J. 2008, 39, 1553–1555. [Google Scholar] [CrossRef]
- Jin, R.; Shi, K.; Qiu, B.; Huang, S. Photoinduced-reset and multilevel storage transistor memories based on antimony-doped tin oxide nanoparticles floating gate. Nanotechnology 2021, 33, 025201. [Google Scholar] [CrossRef]
- Lepadatu, A.M.; Palade, C.; Slav, A.; Maraloiu, A.V.; Lazanu, S.; Stoica, T.; Logofatu, C.; Teodorescu, V.S.; Ciurea, M.L. Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors. Nanotechnology 2017, 28, 175707. [Google Scholar] [CrossRef]
- Mazurak, A.; Mroczyński, R.; Beke, D.; Gali, A. Silicon-Carbide (SiC) Nanocrystal Technology and Characterization and Its Applications in Memory Structures. Nanomaterials 2020, 10, 2387. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Ma, Z.; Shen, Z.; Li, W.; Chen, K.; Xu, J.; Xu, L. 3D NAND Flash Memory Based on Double-Layer NC-Si Floating Gate with High Density of Multilevel Storage. Nanomaterials 2022, 12, 2459. [Google Scholar] [CrossRef]
- Lu, F.; Gong, D.; Wang, J.; Wang, Q.; Sun, H.; Wang, X. Capacitance-voltage characteristics of a Schottky junction containing SiGe/Si quantum wells. Phys. Rev. B 1996, 53, 4623. [Google Scholar] [CrossRef]
- Li, M.; Sah, C.-T. New techniques of capacitance-voltage measurements of semiconductor junctions. Solid-State Electron. 1982, 25, 95–99. [Google Scholar] [CrossRef]
- Lee, Y.K. Study of hysteresis behavior of charges in fluorinated polyimide film by using capacitance-voltage method. Mod. Phys. Lett. B 2006, 20, 445–449. [Google Scholar] [CrossRef]
- Choi, S.; Park, B.; Kim, H.; Cho, K.; Kim, S. Capacitance–voltage characterization of Ge-nanocrystal-embedded MOS capacitors with a capping Al2O3 layer. Semicond. Sci. Technol. 2006, 21, 378. [Google Scholar] [CrossRef]
- Lee, H.S. A new approach for the floating-gate MOS nonvolatile memory. Appl. Phys. Lett. 1977, 31, 475–476. [Google Scholar] [CrossRef]
- Albin, D.S.; del Cueto, J.A. Correlations of capacitance-voltage hysteresis with thin-film CdTe solar cell performance during accelerated lifetime testing. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 318–322. [Google Scholar]
- Rathkanthiwar, S.; Bagheri, P.; Khachariya, D.; Mita, S.; Pavlidis, S.; Reddy, P.; Kirste, R.; Tweedie, J.; Sitar, Z.; Collazo, R. Point-defect management in homoepitaxially grown Si-doped GaN by MOCVD for vertical power devices. Appl. Phys. Express 2022, 15, 051003. [Google Scholar] [CrossRef]
- Garnett, E.C.; Tseng, Y.-C.; Khanal, D.R.; Wu, J.; Bokor, J.; Yang, P. Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nat. Nanotechnol. 2009, 4, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Duan, T.; Ang, D.S. Capacitance hysteresis in the high-k/metal gate-stack from pulsed measurement. IEEE Trans. Electron. Devices 2013, 60, 1349–1354. [Google Scholar] [CrossRef]
- Lu, Q.; Qi, Y.; Zhao, C.Z.; Zhao, C.; Taylor, S.; Chalker, P.R. Anomalous capacitance-voltage hysteresis in MOS devices with ZrO2 and HfO2 dielectrics. In Proceedings of the 2016 5th International Symposium on Next-Generation Electronics (ISNE), Hsinchu, Taiwan, 4–6 May 2016; pp. 1–2. [Google Scholar]
- Kandpal, K.; Gupta, N.; Singh, J.; Shekhar, C. On the Threshold Voltage and Performance of ZnO-Based Thin-Film Transistors with a ZrO2 Gate Dielectric. J. Electron. Mater. 2020, 49, 3156–3164. [Google Scholar] [CrossRef]
- Agrawal, K.; Yoon, G.; Kim, J.; Chavan, G.; Kim, J.; Park, J.; Phong, P.D.; Cho, E.-C.; Yi, J. Improving Retention Properties of ALD-AlxOy Charge Trapping Layer for Non-Volatile Memory Application. ECS J. Solid State Sci. Technol. 2020, 9, 043002. [Google Scholar] [CrossRef]
- Yang, C.; Gu, Z.; Yin, Z.; Qin, F.; Wang, D. Interfacial traps and mobile ions induced flatband voltage instability in 4H-SiC MOS capacitors under bias temperature stress. J. Phys. D Appl. Phys. 2019, 52, 405103. [Google Scholar] [CrossRef]
- Bachman, M. RCA-1 Silicon Wafer Cleaning. Engineering of Microworld at the University of California. Irvine. 1999. Available online: https://phas.ubc.ca/~ampel/nanofab/sop/rca-clean-1.pdf (accessed on 16 January 2023).
- Deal, B.E.; Grove, A. General relationship for the thermal oxidation of silicon. J. Appl. Phys. 1965, 36, 3770–3778. [Google Scholar] [CrossRef] [Green Version]
- Massoud, H.Z.; Plummer, J.D.; Irene, E.A. Thermal oxidation of silicon in dry oxygen: Accurate determination of the kinetic rate constants. J. Electrochem. Soc. 1985, 132, 1745. [Google Scholar] [CrossRef]
- Takagi, T.; Takechi, K.; Nakagawa, Y.; Watabe, Y.; Nishida, S. High rate deposition of a-Si: H and a-SiNx: H by VHF PECVD. Vacuum 1998, 51, 751–755. [Google Scholar] [CrossRef]
- Stannowski, B.; Schropp, R.; Wehrspohn, R.; Powell, M. Amorphous-silicon thin-film transistors deposited by VHF-PECVD and hot-wire CVD. J. Non-Cryst. Solids 2002, 299, 1340–1344. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, P.; Dung, M.X.; Choi, J.-K.; Jeong, S.-H.; Jeong, H.-D. Effects of curing temperature on the optical and charge trap properties of InP quantum dot thin films. Bull. Korean Chem. Soc. 2011, 32, 263–272. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Ma, Z.; Yu, X.; Chen, T.; Zhou, C.; Li, W.; Chen, K.; Xu, J.; Xu, L. Controlling the Carrier Injection Efficiency in 3D Nanocrystalline Silicon Floating Gate Memory by Novel Design of Control Layer. Nanomaterials 2023, 13, 962. https://doi.org/10.3390/nano13060962
Hu H, Ma Z, Yu X, Chen T, Zhou C, Li W, Chen K, Xu J, Xu L. Controlling the Carrier Injection Efficiency in 3D Nanocrystalline Silicon Floating Gate Memory by Novel Design of Control Layer. Nanomaterials. 2023; 13(6):962. https://doi.org/10.3390/nano13060962
Chicago/Turabian StyleHu, Hongsheng, Zhongyuan Ma, Xinyue Yu, Tong Chen, Chengfeng Zhou, Wei Li, Kunji Chen, Jun Xu, and Ling Xu. 2023. "Controlling the Carrier Injection Efficiency in 3D Nanocrystalline Silicon Floating Gate Memory by Novel Design of Control Layer" Nanomaterials 13, no. 6: 962. https://doi.org/10.3390/nano13060962
APA StyleHu, H., Ma, Z., Yu, X., Chen, T., Zhou, C., Li, W., Chen, K., Xu, J., & Xu, L. (2023). Controlling the Carrier Injection Efficiency in 3D Nanocrystalline Silicon Floating Gate Memory by Novel Design of Control Layer. Nanomaterials, 13(6), 962. https://doi.org/10.3390/nano13060962