Photoluminescence Redistribution of InGaN Nanowires Induced by Plasmonic Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Initial InGaN NWs
3.2. Ag NPs
3.3. Hybrid Nanostructures Based on NWs and NPs
3.4. Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ra, Y.-H.; Lee, C.-R. Understanding the P-Type GaN Nanocrystals on InGaN Nanowire Heterostructures. ACS Photonics 2019, 6, 2397–2404. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Y.; Malhotra, Y.; Pandey, A.; Wu, Y.; Sun, K.; Mi, Z. High Efficiency InGaN Nanowire Tunnel Junction Green Micro-LEDs. Appl. Phys. Lett. 2021, 119, 141110. [Google Scholar] [CrossRef]
- Nguyen, H.P.T.; Djavid, M.; Woo, S.Y.; Liu, X.; Connie, A.T.; Sadaf, S.; Wang, Q.; Botton, G.A.; Shih, I.; Mi, Z. Engineering the Carrier Dynamics of InGaN Nanowire White Light-Emitting Diodes by Distributed p-AlGaN Electron Blocking Layers. Sci. Rep. 2015, 5, 7744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.; Zhang, M.; Banerjee, A.; Bhattacharya, P. Catalyst-Free InGaN/GaN Nanowire Light Emitting Diodes Grown on (001) Silicon by Molecular Beam Epitaxy. Nano Lett. 2010, 10, 3355–3359. [Google Scholar] [CrossRef]
- Kuykendall, T.; Ulrich, P.; Aloni, S.; Yang, P. Complete Composition Tunability of InGaN Nanowires Using a Combinatorial Approach. Nat. Mater. 2007, 6, 951–956. [Google Scholar] [CrossRef]
- Xiang, H.; Wei, S.-H.; Da Silva, J.L.; Li, J. Strain Relaxation and Band-Gap Tunability in Ternary InxGa1−xN Nanowires. Phys. Rev. B 2008, 78, 193301. [Google Scholar] [CrossRef]
- Gridchin, V.O.; Kotlyar, K.P.; Reznik, R.R.; Dragunova, A.S.; Kryzhanovskaya, N.V.; Lendyashova, V.V.; Kirilenko, D.A.; Soshnikov, I.P.; Shevchuk, D.S.; Cirlin, G.G. Multi-Colour Light Emission from InGaN Nanowires Monolithically Grown on Si Substrate by MBE. Nanotechnology 2021, 32, 335604. [Google Scholar] [CrossRef]
- Bui, H.Q.T.; Velpula, R.T.; Jain, B.; Aref, O.H.; Nguyen, H.-D.; Lenka, T.R.; Nguyen, H.P.T. Full-Color InGaN/AlGaN Nanowire Micro Light-Emitting Diodes Grown by Molecular Beam Epitaxy: A Promising Candidate for next Generation Micro Displays. Micromachines 2019, 10, 492. [Google Scholar] [CrossRef] [Green Version]
- Ra, Y.-H.; Wang, R.; Woo, S.Y.; Djavid, M.; Sadaf, S.M.; Lee, J.; Botton, G.A.; Mi, Z. Full-Color Single Nanowire Pixels for Projection Displays. Nano Lett. 2016, 16, 4608–4615. [Google Scholar] [CrossRef]
- Tabata, T.; Paek, J.; Honda, Y.; Yamaguchi, M.; Amano, H. Growth of InGaN Nanowires on a (111) Si Substrate by RF-MBE. Phys. Status Solidi C 2012, 9, 646–649. [Google Scholar] [CrossRef]
- Wu, K.; Pan, Y.; Liu, C. InGaN Nanorod Arrays Grown by Molecular Beam Epitaxy: Growth Mechanism Structural and Optical Properties. Appl. Surf. Sci. 2009, 255, 6705–6709. [Google Scholar] [CrossRef]
- Cobley, C.M.; Skrabalak, S.E.; Campbell, D.J.; Xia, Y. Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics 2009, 4, 171–179. [Google Scholar] [CrossRef]
- Amirjani, A.; Haghshenas, D.F. Ag Nanostructures as the Surface Plasmon Resonance (SPR)˗ Based Sensors: A Mechanistic Study with an Emphasis on Heavy Metallic Ions Detection. Sens. Actuators B Chem. 2018, 273, 1768–1779. [Google Scholar] [CrossRef]
- Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.-C.; Grumezescu, A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials 2020, 10, 2318. [Google Scholar] [CrossRef] [PubMed]
- Barabadi, H.; Hosseini, O.; Damavandi Kamali, K.; Jazayeri Shoushtari, F.; Rashedi, M.; Haghi-Aminjan, H.; Saravanan, M. Emerging Theranostic Silver Nanomaterials to Combat Lung Cancer: A Systematic Review. J. Clust. Sci. 2020, 31, 1–10. [Google Scholar] [CrossRef]
- Klimov, V.V. Nanoplasmonics, 1st ed.; Physico-Mathematical Literature: Moscow, Russia, 2009; pp. 22–37. [Google Scholar]
- Rodríguez-Sánchez, M.L.; Rodríguez, M.J.; Blanco, M.C.; Rivas, J.; López-Quintela, M.A. Kinetics and Mechanism of the Formation of Ag Nanoparticles by Electrochemical Techniques: A Plasmon and Cluster Time-Resolved Spectroscopic Study. J. Phys. Chem. B 2005, 109, 1183–1191. [Google Scholar] [CrossRef]
- Amendola, V.; Meneghetti, M. Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles. Phys. Chem. Chem. Phys. 2009, 11, 3805–3821. [Google Scholar] [CrossRef]
- Clavero, C. Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices. Nat. Photonics 2014, 8, 95–103. [Google Scholar] [CrossRef]
- Cushing, S.K.; Li, J.; Bright, J.; Yost, B.T.; Zheng, P.; Bristow, A.D.; Wu, N. Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@ TiO2 Core–Shell Nanoparticles. J. Phys. Chem. C 2015, 119, 16239–16244. [Google Scholar] [CrossRef]
- Cushing, S.K.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A.D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041. [Google Scholar] [CrossRef]
- Sung, J.-H.; Yang, J.S.; Kim, B.-S.; Choi, C.-H.; Lee, M.-W.; Lee, S.-G.; Park, S.-G.; Lee, E.-H.; O, B.-H. Enhancement of Electroluminescence in GaN-Based Light-Emitting Diodes by Metallic Nanoparticles. Appl. Phys. Lett. 2010, 96, 261105. [Google Scholar] [CrossRef]
- Kim, B.-M.; Reddy, M.S.P.; Lee, Y.-W.; Park, C. Enhanced Surface and Optical Properties of Colloidal Silver Nano-Particles on GaN-Based Light-Emitting Diodes by a Localized Surface Plasmon Resonance Effect Using a Low-Cost Metal-Assisted Chemical Etching Method. Opt. Commun. 2019, 450, 276–281. [Google Scholar] [CrossRef]
- Iida, D.; Fadil, A.; Chen, Y.; Ou, Y.; Kopylov, O.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Ou, H. Internal Quantum Efficiency Enhancement of GaInN/GaN Quantum-Well Structures Using Ag Nanoparticles. AIP Adv. 2015, 5, 097169. [Google Scholar] [CrossRef] [Green Version]
- Pescaglini, A.; Iacopino, D. Metal Nanoparticle–Semiconductor Nanowire Hybrid Nanostructures for Plasmon-Enhanced Optoelectronics and Sensing. J. Mater. Chem. C 2015, 3, 11785–11800. [Google Scholar] [CrossRef]
- Hyun, J.K.; Lauhon, L.J. Spatially Resolved Plasmonically Enhanced Photocurrent from Au Nanoparticles on a Si Nanowire. Nano Lett. 2011, 11, 2731–2734. [Google Scholar] [CrossRef]
- Chen, R.; Li, D.; Hu, H.; Zhao, Y.; Wang, Y.; Wong, N.; Wang, S.; Zhang, Y.; Hu, J.; Shen, Z. Tailoring Optical Properties of Silicon Nanowires by Au Nanostructure Decorations: Enhanced Raman Scattering and Photodetection. J. Phys. Chem. C 2012, 116, 4416–4422. [Google Scholar] [CrossRef]
- Cheng, C.; Sie, E.; Liu, B.; Huan, C.; Sum, T.; Sun, H.; Fan, H. Surface Plasmon Enhanced Band Edge Luminescence of ZnO Nanorods by Capping Au Nanoparticles. Appl. Phys. Lett. 2010, 96, 071107. [Google Scholar] [CrossRef]
- Casadei, A.; Pecora, E.F.; Trevino, J.; Forestiere, C.; Rüffer, D.; Russo-Averchi, E.; Matteini, F.; Tutuncuoglu, G.; Heiss, M.; Fontcuberta i Morral, A. Photonic–Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas. Nano Lett. 2014, 14, 2271–2278. [Google Scholar] [CrossRef]
- Li, H.; Xia, H.; Wang, D.; Tao, X. Simple Synthesis of Monodisperse, Quasi-Spherical, Citrate-Stabilized Silver Nanocrystals in Water. Langmuir 2013, 29, 5074–5079. [Google Scholar] [CrossRef]
- Matyushkin, L.; Pertsova, A.; Moshnikov, V. Enhanced Luminescence of Quantum Dots near a Layer of Ag/SiO2 Nanoparticles. Tech. Phys. Lett. 2018, 44, 331–333. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzán, L.M. Silica Coating of Silver Nanoparticles Using a Modified Stöber Method. J. Colloid Interface Sci. 2005, 283, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Consonni, V. Self-induced Growth of GaN Nanowires by Molecular Beam Epitaxy: A Critical Review of the Formation Mechanisms. Phys. Status Solidi Rapid Res. Lett. 2013, 7, 699–712. [Google Scholar] [CrossRef]
- Zhu, D.; Wallis, D.; Humphreys, C. Prospects of III-Nitride Optoelectronics Grown on Si. Rep. Prog. Phys. 2013, 76, 106501. [Google Scholar] [CrossRef] [PubMed]
- Koblmüller, G.; Gallinat, C.; Speck, J. Surface Kinetics and Thermal Instability of N-Face InN Grown by Plasma-Assisted Molecular Beam Epitaxy. J. Appl. Phys. 2007, 101, 083516. [Google Scholar] [CrossRef]
- Léonard, F. Reduced Joule Heating in Nanowires. Appl. Phys. Lett. 2011, 98, 103101. [Google Scholar] [CrossRef] [Green Version]
- Glas, F.; Harmand, J.-C. Calculation of the Temperature Profile in Nanowhiskers Growing on a Hot Substrate. Phys. Rev. B 2006, 73, 155320. [Google Scholar] [CrossRef]
- Sibirev, N.; Soshnikov, I.; Dubrovskii, V.; Arshansky, E. Temperature Profile along a Nanowhisker Growing in High Vacuum. Tech. Phys. Lett. 2006, 32, 292–295. [Google Scholar] [CrossRef]
- Kim, S.-U.; Ra, Y.-H. Modeling and Epitaxial Growth of Homogeneous Long-InGaN Nanowire Structures. Nanomaterials 2020, 11, 9. [Google Scholar] [CrossRef]
- Gruart, M.; Jacopin, G.; Daudin, B. Role of Ga Surface Diffusion in the Elongation Mechanism and Optical Properties of Catalyst-Free GaN Nanowires Grown by Molecular Beam Epitaxy. Nano Lett. 2019, 19, 4250–4256. [Google Scholar] [CrossRef]
- Morassi, M.; Largeau, L.; Oehler, F.; Song, H.-G.; Travers, L.; Julien, F.H.; Harmand, J.-C.; Cho, Y.-H.; Glas, F.; Tchernycheva, M. Morphology Tailoring and Growth Mechanism of Indium-Rich InGaN/GaN Axial Nanowire Heterostructures by Plasma-Assisted Molecular Beam Epitaxy. Cryst. Growth Des. 2018, 18, 2545–2554. [Google Scholar] [CrossRef]
- Glas, F.; Daudin, B. Stress-Driven Island Growth on Top of Nanowires. Phys. Rev. B 2012, 86, 174112. [Google Scholar] [CrossRef]
- Orsal, G.; El Gmili, Y.; Fressengeas, N.; Streque, J.; Djerboub, R.; Moudakir, T.; Sundaram, S.; Ougazzaden, A.; Salvestrini, J.-P. Bandgap Energy Bowing Parameter of Strained and Relaxed InGaN Layers. Opt. Mater. Express 2014, 4, 1030–1041. [Google Scholar] [CrossRef]
- Roche, E.; Andre, Y.; Avit, G.; Bougerol, C.; Castelluci, D.; Réveret, F.; Gil, E.; Médard, F.; Leymarie, J.; Jean, T. Circumventing the Miscibility Gap in InGaN Nanowires Emitting from Blue to Red. Nanotechnology 2018, 29, 465602. [Google Scholar] [CrossRef] [PubMed]
- Morkoç, H. Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 1, ISBN 3-527-62846-0. [Google Scholar]
- Tourbot, G.; Bougerol, C.; Grenier, A.; Den Hertog, M.; Sam-Giao, D.; Cooper, D.; Gilet, P.; Gayral, B.; Daudin, B. Structural and Optical Properties of InGaN/GaN Nanowire Heterostructures Grown by PA-MBE. Nanotechnology 2011, 22, 075601. [Google Scholar] [CrossRef]
- Murotani, H.; Yamada, Y.; Tabata, T.; Honda, Y.; Yamaguchi, M.; Amano, H. Effects of Exciton Localization on Internal Quantum Efficiency of InGaN Nanowires. J. Appl. Phys. 2013, 114, 153506. [Google Scholar] [CrossRef]
- Hetzl, M.; Kraut, M.; Winnerl, J.; Francaviglia, L.; Döblinger, M.; Matich, S.; Fontcuberta i Morral, A.; Stutzmann, M. Strain-Induced Band Gap Engineering in Selectively Grown GaN–(Al, Ga) N Core–Shell Nanowire Heterostructures. Nano Lett. 2016, 16, 7098–7106. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Rinke, P.; Janotti, A.; Scheffler, M.; Van de Walle, C.G. Effects of Strain on the Band Structure of Group-III Nitrides. Phys. Rev. B 2014, 90, 125118. [Google Scholar] [CrossRef] [Green Version]
- García, M.A. Surface Plasmons in Metallic Nanoparticles: Fundamentals and Applications. J. Phys. D 2011, 44, 283001. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-Nm to 200-Μm Wavelength Region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- Steinigeweg, D.; Schluecker, S. Monodispersity and Size Control in the Synthesis of 20–100 Nm Quasi-Spherical Silver Nanoparticles by Citrate and Ascorbic Acid Reduction in Glycerol–Water Mixtures. Chem. Commun. 2012, 48, 8682–8684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barani, H.; Montazer, M.; Toliyat, T.; Samadi, N. Synthesis of Ag-Liposome Nano Composites. J. Liposome Res. 2010, 20, 323–329. [Google Scholar] [CrossRef]
- Toropov, N.; Leonov, N.; Vartanyan, T. Influence of Silver Nanoparticles Crystallinity on Localized Surface Plasmons Dephasing Times. Phys. Status Solidi B Basic Res. 2018, 255, 1700174. [Google Scholar] [CrossRef]
- Klar, T.; Perner, M.; Grosse, S.; Von Plessen, G.; Spirkl, W.; Feldmann, J. Surface-Plasmon Resonances in Single Metallic Nanoparticles. Phys. Rev. Lett. 1998, 80, 4249. [Google Scholar] [CrossRef]
- Dobrovolskas, D.; Mickevičius, J.; Nargelas, S.; Chen, H.; Tu, C.; Liao, C.-H.; Hsieh, C.; Su, C.; Tamulaitis, G.; Yang, C. InGaN/GaN MQW Photoluminescence Enhancement by Localized Surface Plasmon Resonance on Isolated Ag Nanoparticles. Plasmonics 2014, 9, 1183–1187. [Google Scholar] [CrossRef]
- Fan, X.; Zheng, W.; Singh, D.J. Light Scattering and Surface Plasmons on Small Spherical Particles. Light Sci. Appl. 2014, 3, e179. [Google Scholar] [CrossRef] [Green Version]
- Luk‘yanchuk, B.; Tribelsky, M.; Ternovsky, V.; Wang, Z.; Hong, M.; Shi, L.; Chong, T. Peculiarities of Light Scattering by Nanoparticles and Nanowires near Plasmon Resonance Frequencies in Weakly Dissipating Materials. J. Opt. A Pure Appl. Opt. 2007, 9, S294. [Google Scholar] [CrossRef] [Green Version]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 3-527-61816-3. [Google Scholar]
- Ali, A.; Naqvi, Q.A.; Baqir, M.A. Investigation of the Plasmon Resonance of Core-Shell Nanoparticle in the near-Infrared Region. J. Electromagn. Waves Appl. 2019, 33, 2462–2475. [Google Scholar] [CrossRef]
- Anani, M.; Abid, H.; Chama, Z.; Mathieu, C.; Sayede, A.; Khelifa, B. InxGa1−XN Refractive Index Calculations. Microelectron. J. 2007, 38, 262–266. [Google Scholar] [CrossRef]
- Madelung, O. Semiconductors: Data Handbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; ISBN 3-540-40488-0. [Google Scholar]
- Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells. J. Phys. Chem. B 2003, 107, 8607–8611. [Google Scholar] [CrossRef]
- Du, L.; Shi, X.; Zhang, G.; Furube, A. Plasmon Induced Charge Transfer Mechanism in Gold-TiO2 Nanoparticle Systems: The Size Effect of Gold Nanoparticle. J. Appl. Phys. 2020, 128, 213104. [Google Scholar] [CrossRef]
- Gu, X.; Qiu, T.; Zhang, W.; Chu, P.K. Light-Emitting Diodes Enhanced by Localized Surface Plasmon Resonance. Nanoscale Res. Lett. 2011, 6, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shugabaev, T.; Gridchin, V.O.; Komarov, S.D.; Kirilenko, D.A.; Kryzhanovskaya, N.V.; Kotlyar, K.P.; Reznik, R.R.; Girshova, Y.I.; Nikolaev, V.V.; Kaliteevski, M.A.; et al. Photoluminescence Redistribution of InGaN Nanowires Induced by Plasmonic Silver Nanoparticles. Nanomaterials 2023, 13, 1069. https://doi.org/10.3390/nano13061069
Shugabaev T, Gridchin VO, Komarov SD, Kirilenko DA, Kryzhanovskaya NV, Kotlyar KP, Reznik RR, Girshova YI, Nikolaev VV, Kaliteevski MA, et al. Photoluminescence Redistribution of InGaN Nanowires Induced by Plasmonic Silver Nanoparticles. Nanomaterials. 2023; 13(6):1069. https://doi.org/10.3390/nano13061069
Chicago/Turabian StyleShugabaev, Talgat, Vladislav O. Gridchin, Sergey D. Komarov, Demid A. Kirilenko, Natalia V. Kryzhanovskaya, Konstantin P. Kotlyar, Rodion R. Reznik, Yelizaveta I. Girshova, Valentin V. Nikolaev, Michael A. Kaliteevski, and et al. 2023. "Photoluminescence Redistribution of InGaN Nanowires Induced by Plasmonic Silver Nanoparticles" Nanomaterials 13, no. 6: 1069. https://doi.org/10.3390/nano13061069