Amorphous As2S3 Doped with Transition Metals: An Ab Initio Study of Electronic Structure and Magnetic Properties
Abstract
1. Introduction
2. Simulation Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Density Functional Theory |
AIMD | Ab initio molecular dynamics |
GGA | Generalized Gradient Approximation |
PW91 | Perdew-Wang |
PBE | Perdew-Burke-Ernzerhof |
vdW | van der Waals |
TS | Tkatchenko and Scheffler |
PAW | Projected Augmented Wave |
VASP | Vienna Ab initio Simulation Package |
CASTEP | CAmbridge Serial Total Energy Package |
USP | Ultrasoft pseudopotentials |
BFGS | Broyden-Fletcher-Goldfarb-Shanno |
BZ | Brillouin zone |
Ch | Chalcogen |
TM | Transition metal |
DOS | Density of States |
PDOS | Partial Density of States |
LDOS | Local Density of States |
SCF | Self-Consistent Field |
ISD | Integrated Spin Density |
IMSD | Integrated Modulus Spin Density |
mq | Melt-quenched |
GOpt | Geometry Optimization |
CB | Covalent bond |
LP | Lone pair |
CDD | Charge Density Difference |
Appendix A. Atomic and Bond Populations
Species | Spin | s | p | d | Total | Charge (e) | Spin (ℏ/2) |
---|---|---|---|---|---|---|---|
Mo1 | up | 1.261 | 3.332 | 2.840 | 7.433 | −0.150 | 0.715 |
down | 1.240 | 3.304 | 2.174 | 6.717 | |||
Mo2 | up | 1.258 | 3.313 | 2.541 | 7.112 | −0.206 | 0.017 |
down | 1.257 | 3.313 | 2.524 | 7.095 | |||
Mo3 | up | 1.268 | 3.308 | 2.843 | 7.420 | −0.004 | 0.836 |
down | 1.235 | 3.256 | 2.093 | 6.584 | |||
Mo4 | up | 1.248 | 3.325 | 2.456 | 7.029 | −0.056 | 0.001 |
down | 1.248 | 3.325 | 2.454 | 7.027 | |||
Mo5 | up | 1.238 | 3.240 | 2.537 | 7.014 | −0.019 | 0.010 |
down | 1.240 | 3.245 | 2.519 | 7.004 |
Species | Spin | s | p | d | Total | Charge (e) | Spin (ℏ/2) |
---|---|---|---|---|---|---|---|
Mo1 | up | 1.248 | 3.302 | 2.811 | 7.362 | −0.084 | 0.640 |
down | 1.230 | 3.275 | 2.216 | 6.722 | |||
Mo2 | up | 1.242 | 3.301 | 2.540 | 7.083 | −0.158 | 0.009 |
down | 1.242 | 3.301 | 2.532 | 7.074 | |||
Mo3 | up | 1.272 | 3.278 | 2.856 | 7.405 | 0.062 | 0.873 |
down | 1.234 | 3.225 | 2.073 | 6.533 | |||
Mo4 | up | 1.237 | 3.297 | 2.459 | 6.993 | 0.014 | 0.001 |
down | 1.237 | 3.297 | 2.458 | 6.993 | |||
Mo5 | up | 1.246 | 3.226 | 2.540 | 7.012 | 0.014 | 0.039 |
down | 1.247 | 3.230 | 2.497 | 6.974 |
Species | Spin | s | p | d | Total | Charge (e) | Spin (ℏ/2) |
---|---|---|---|---|---|---|---|
V1 | up | 1.234 | 3.351 | 1.893 | 6.478 | 0.051 | 0.007 |
down | 1.234 | 3.351 | 1.886 | 6.471 | |||
V2 | up | 1.242 | 3.358 | 2.223 | 6.824 | 0.007 | 0.654 |
down | 1.224 | 3.332 | 1.614 | 6.170 | |||
V3 | up | 1.244 | 3.340 | 2.167 | 6.751 | 0.176 | 0.678 |
down | 1.224 | 3.306 | 1.542 | 6.073 | |||
V4 | up | 1.229 | 3.345 | 1.927 | 6.501 | 0.136 | 0.139 |
down | 1.226 | 3.341 | 1.796 | 6.363 | |||
V5 | up | 1.229 | 3.317 | 2.294 | 6.840 | 0.154 | 0.834 |
down | 1.206 | 3.287 | 1.513 | 6.006 |
Species | Spin | s | p | d | Total | Charge (e) | Spin (ℏ/2) |
---|---|---|---|---|---|---|---|
V1 | up | 1.214 | 3.315 | 1.909 | 6.439 | 0.115 | −0.008 |
down | 1.214 | 3.316 | 1.917 | 6.447 | |||
V2 | up | 1.210 | 3.329 | 1.951 | 6.490 | 0.041 | 0.022 |
down | 1.210 | 3.328 | 1.930 | 6.469 | |||
V3 | up | 1.231 | 3.305 | 2.164 | 6.700 | 0.214 | 0.614 |
down | 1.214 | 3.282 | 1.590 | 6.086 | |||
V4 | up | 1.212 | 3.317 | 1.879 | 6.408 | 0.182 | −0.001 |
down | 1.212 | 3.317 | 1.880 | 6.410 | |||
V5 | up | 1.220 | 3.290 | 2.226 | 6.735 | 0.184 | 0.654 |
down | 1.203 | 3.269 | 1.609 | 6.081 |
Species | Spin | s | p | d | Total | Charge (e) | Spin (ℏ/2) |
---|---|---|---|---|---|---|---|
W1 | up | 1.327 | 3.375 | 2.227 | 6.930 | −0.160 | −0.301 |
down | 1.337 | 3.391 | 2.503 | 7.230 | |||
W2 | up | 1.340 | 3.385 | 2.372 | 7.097 | −0.200 | −0.007 |
down | 1.340 | 3.385 | 2.378 | 7.104 | |||
W3 | up | 1.338 | 3.367 | 2.487 | 7.192 | 0.008 | 0.393 |
down | 1.320 | 3.333 | 2.147 | 6.800 | |||
W4 | up | 1.333 | 3.383 | 2.291 | 7.007 | −0.015 | 0.000 |
down | 1.334 | 3.383 | 2.291 | 7.008 | |||
W5 | up | 1.315 | 3.310 | 2.393 | 7.018 | −0.004 | 0.031 |
down | 1.314 | 3.309 | 2.363 | 6.987 |
Species | Spin | s | p | d | Total | Charge (e) | Spin (ℏ/2) |
---|---|---|---|---|---|---|---|
W1 | up | 1.321 | 3.362 | 2.366 | 7.049 | −0.098 | 0.000 |
down | 1.321 | 3.362 | 2.366 | 7.049 | |||
W2 | up | 1.329 | 3.377 | 2.373 | 7.079 | −0.158 | 0.000 |
down | 1.329 | 3.377 | 2.373 | 7.079 | |||
W3 | up | 1.330 | 3.327 | 2.312 | 6.969 | 0.062 | 0.000 |
down | 1.330 | 3.327 | 2.313 | 6.969 | |||
W4 | up | 1.325 | 3.361 | 2.290 | 6.976 | 0.047 | 0.000 |
down | 1.325 | 3.361 | 2.290 | 6.976 | |||
W5 | up | 1.321 | 3.305 | 2.361 | 6.987 | 0.026 | 0.000 |
down | 1.321 | 3.305 | 2.361 | 6.987 |
Bond | Population | Length (Å) |
---|---|---|
S 62 – Mo 1 | 0.42 | 2.35153 |
S 97 – Mo 1 | 0.70 | 2.36834 |
S 43 – Mo 1 | 0.55 | 2.45819 |
S 96 – Mo 1 | 0.50 | 2.55119 |
As 2 – Mo 1 | 0.10 | 2.62421 |
S 117 – Mo 1 | 0.19 | 2.66196 |
S 37 – Mo 2 | 0.51 | 2.39509 |
S 71 – Mo 2 | 0.55 | 2.44170 |
S 104 – Mo 2 | 0.34 | 2.51202 |
S 51 – Mo 2 | 0.25 | 2.51837 |
S 48 – Mo 2 | 0.29 | 2.54396 |
S 50 – Mo 3 | 0.65 | 2.28939 |
S 136 – Mo 3 | 0.39 | 2.40071 |
S 18 – Mo 3 | 0.45 | 2.41271 |
S 103 – Mo 3 | 0.42 | 2.47104 |
S 66 – Mo 3 | 0.37 | 2.48602 |
S 100 – Mo 3 | 0.47 | 2.54992 |
S 21 – Mo 4 | 0.83 | 2.27300 |
S 5 – Mo 4 | 0.57 | 2.35213 |
S 65 – Mo 4 | 0.69 | 2.36482 |
S 132 – Mo 4 | 0.52 | 2.40702 |
S 138 – Mo 4 | 0.57 | 2.44573 |
S 102 – Mo 4 | 0.26 | 2.67791 |
S 61 – Mo 5 | 0.55 | 2.31356 |
S 98 – Mo 5 | 0.31 | 2.38004 |
S 103 – Mo 5 | 0.53 | 2.44358 |
S 136 – Mo 5 | 0.33 | 2.47183 |
S 139 – Mo 5 | 0.14 | 2.51564 |
S 66 – Mo 5 | 0.38 | 2.59185 |
Bond | Population | Length (Å) |
---|---|---|
S 97 – Mo 1 | 0.69 | 2.34497 |
S 62 – Mo 1 | 0.40 | 2.38299 |
S 43 – Mo 1 | 0.52 | 2.44055 |
S 96 – Mo 1 | 0.56 | 2.44842 |
S 117 – Mo 1 | 0.17 | 2.60819 |
As 2 – Mo 1 | 0.03 | 2.67550 |
S 37 – Mo 2 | 0.49 | 2.36059 |
S 71 – Mo 2 | 0.53 | 2.42611 |
S 104 – Mo 2 | 0.37 | 2.49311 |
S 51 – Mo 2 | 0.27 | 2.49964 |
S 48 – Mo 2 | 0.22 | 2.58459 |
As 69 – Mo 2 | 0.05 | 2.65684 |
S 50 – Mo 3 | 0.61 | 2.34939 |
S 136 – Mo 3 | 0.41 | 2.41678 |
S 18 – Mo 3 | 0.48 | 2.42998 |
S 103 – Mo 3 | 0.42 | 2.43346 |
S 66 – Mo 3 | 0.35 | 2.45545 |
S 100 – Mo 3 | 0.50 | 2.49639 |
S 21 – Mo 4 | 0.81 | 2.24730 |
S 5 – Mo 4 | 0.55 | 2.34310 |
S 65 – Mo 4 | 0.64 | 2.36593 |
S 138 – Mo 4 | 0.57 | 2.41099 |
S 132 – Mo 4 | 0.46 | 2.50006 |
S 102 – Mo 4 | 0.27 | 2.60575 |
S 98 – Mo 5 | 0.31 | 2.36449 |
S 103 – Mo 5 | 0.45 | 2.43617 |
S 136 – Mo 5 | 0.33 | 2.44773 |
S 61 – Mo 5 | 0.50 | 2.47537 |
S 139 – Mo 5 | 0.20 | 2.49435 |
S 66 – Mo 5 | 0.38 | 2.55565 |
As 18 – Mo 5 | 0.14 | 2.62478 |
Bond | Population | Length (Å) |
---|---|---|
S 62 – V 1 | 0.44 | 2.35153 |
S 97 – V 1 | 0.64 | 2.36834 |
S 43 – V 1 | 0.51 | 2.45819 |
S 96 – V 1 | 0.48 | 2.55119 |
V 1 – As 2 | 0.20 | 2.62421 |
S 117 – V 1 | 0.21 | 2.66196 |
S 37 – V 2 | 0.49 | 2.39509 |
S 71 – V 2 | 0.52 | 2.44170 |
S 104 – V 2 | 0.32 | 2.51202 |
S 51 – V 2 | 0.27 | 2.51837 |
S 48 – V 2 | 0.29 | 2.54396 |
V 2 – As 69 | 0.02 | 2.69034 |
S 50 – V 3 | 0.63 | 2.28939 |
S 136 – V 3 | 0.41 | 2.40071 |
S 18 – V 3 | 0.43 | 2.41271 |
S 103 – V 3 | 0.44 | 2.47104 |
S 66 – V 3 | 0.37 | 2.48602 |
S 100 – V 3 | 0.46 | 2.54992 |
S 21 – V 4 | 0.73 | 2.27300 |
S 5 – V 4 | 0.51 | 2.35213 |
S 65 – V 4 | 0.63 | 2.36482 |
S 132 – V 4 | 0.46 | 2.40702 |
S 138 – V 4 | 0.52 | 2.44573 |
S 102 – V 4 | 0.25 | 2.67791 |
S 61 – V 5 | 0.57 | 2.31356 |
S 98 – V 5 | 0.33 | 2.38004 |
S 103 – V 5 | 0.46 | 2.44358 |
S 136 – V 5 | 0.32 | 2.47183 |
S 139 – V 5 | 0.19 | 2.51564 |
S 66 – V 5 | 0.37 | 2.59185 |
Bond | Population | Length (Å) |
---|---|---|
S 97 – V 1 | 0.65 | 2.29484 |
S 96 – V 1 | 0.57 | 2.32880 |
S 62 – V 1 | 0.38 | 2.35927 |
S 43 – V 1 | 0.49 | 2.37497 |
S 117 – V 1 | 0.18 | 2.60801 |
V 1 – As 2 | 0.10 | 2.65447 |
S 37 – V 2 | 0.51 | 2.28793 |
S 104 – V 2 | 0.49 | 2.32588 |
S 71 – V 2 | 0.44 | 2.42616 |
S 51 – V 2 | 0.27 | 2.48525 |
S 48 – V 2 | 0.25 | 2.55042 |
V 2 – As 69 | 0.05 | 2.87340 |
S 50 – V 3 | 0.63 | 2.25890 |
S 136 – V 3 | 0.41 | 2.34574 |
S 103 – V 3 | 0.43 | 2.35365 |
S 18 – V 3 | 0.46 | 2.36615 |
S 66 – V 3 | 0.35 | 2.42930 |
S 100 – V 3 | 0.42 | 2.51927 |
S 21 – V 4 | 0.73 | 2.19812 |
S 5 – V 4 | 0.49 | 2.30330 |
S 65 – V 4 | 0.60 | 2.32754 |
S 138 – V 4 | 0.53 | 2.37150 |
S 132 – V 4 | 0.41 | 2.49042 |
S 102 – V 4 | 0.23 | 2.64811 |
S 98 – V 5 | 0.34 | 2.29003 |
S 139 – V 5 | 0.23 | 2.38030 |
S 61 – V 5 | 0.54 | 2.38320 |
S 103 – V 5 | 0.39 | 2.42524 |
S 136 – V 5 | 0.29 | 2.48977 |
S 66 – V 5 | 0.39 | 2.52080 |
V 5 – As 18 | 0.08 | 2.66532 |
Bond | Population | Length (Å) |
---|---|---|
S 97 – W 1 | 0.76 | 2.36834 |
S 43 – W 1 | 0.61 | 2.45819 |
S 96 – W 1 | 0.53 | 2.55119 |
As 2 – W 1 | 0.29 | 2.62421 |
S 117 – W 1 | 0.24 | 2.66196 |
S 37 – W 2 | 0.58 | 2.39509 |
S 71 – W 2 | 0.60 | 2.44170 |
S 104 – W 2 | 0.41 | 2.51202 |
S 51 – W 2 | 0.31 | 2.51837 |
S 48 – W 2 | 0.34 | 2.54396 |
As 69 – W 2 | 0.10 | 2.69034 |
S 50 – W 3 | 0.74 | 2.28939 |
S 136 – W 3 | 0.44 | 2.40071 |
S 18 – W 3 | 0.53 | 2.41271 |
S 103 – W 3 | 0.50 | 2.47104 |
S 66 – W 3 | 0.42 | 2.48602 |
S 100 – W 3 | 0.55 | 2.54992 |
S 21 – W 4 | 0.92 | 2.27300 |
S 5 – W 4 | 0.65 | 2.35213 |
S 65 – W 4 | 0.75 | 2.36482 |
S 132 – W 4 | 0.58 | 2.40702 |
S 138 – W 4 | 0.63 | 2.44573 |
S 102 – W 4 | 0.31 | 2.67791 |
S 61 – W 5 | 0.65 | 2.31372 |
S 98 – W 5 | 0.38 | 2.37996 |
S 103 – W 5 | 0.55 | 2.44368 |
S 136 – W 5 | 0.37 | 2.47186 |
S 139 – W 5 | 0.21 | 2.51564 |
S 66 – W 5 | 0.39 | 2.59173 |
As 18 – W 5 | 0.14 | 2.65071 |
Bond | Population | Length (Å) |
---|---|---|
S 62 – W 1 | 0.55 | 2.34022 |
S 97 – W 1 | 0.74 | 2.34139 |
S 43 – W 1 | 0.62 | 2.41789 |
S 96 – W 1 | 0.58 | 2.46070 |
S 117 – W 1 | 0.24 | 2.58213 |
As 2 – W 1 | 0.17 | 2.68840 |
S 37 – W 2 | 0.58 | 2.35692 |
S 71 – W 2 | 0.58 | 2.43016 |
S 104 – W 2 | 0.46 | 2.47766 |
S 51 – W 2 | 0.35 | 2.48555 |
S 48 – W 2 | 0.28 | 2.56779 |
As 69 – W 2 | 0.20 | 2.67965 |
S 50 – W 3 | 0.69 | 2.35406 |
S 103 – W 3 | 0.53 | 2.40099 |
S 18 – W 3 | 0.57 | 2.41828 |
S 100 – W 3 | 0.60 | 2.43290 |
S 136 – W 3 | 0.43 | 2.43514 |
S 66 – W 3 | 0.39 | 2.46608 |
S 21 – W 4 | 0.93 | 2.24250 |
S 5 – W 4 | 0.61 | 2.35681 |
S 65 – W 4 | 0.71 | 2.36997 |
S 138 – W 4 | 0.63 | 2.40442 |
S 132 – W 4 | 0.54 | 2.47843 |
S 102 – W 4 | 0.32 | 2.60427 |
S 98 – W 5 | 0.40 | 2.38134 |
S 103 – W 5 | 0.50 | 2.43729 |
S 61 – W 5 | 0.59 | 2.45037 |
S 136 – W 5 | 0.37 | 2.46057 |
S 139 – W 5 | 0.26 | 2.49339 |
S 66 – W 5 | 0.41 | 2.54839 |
As 18 – W 5 | 0.31 | 2.60879 |
References
- Goryunova, N.; Kolomiets, B. Electrical properties and structure in system of Selenide of Tl, Sb, and As. Zhurnal Tekhnicheskoi Fiz. 1955, 25, 2669. [Google Scholar]
- Kastner, M. Bonding Bands, Lone-Pair Bands and Impurity States in Chalcogenide Semiconductors. Phys. Rev. Lett. 1972, 28, 355–357. [Google Scholar] [CrossRef]
- Kolobov, A.V. Photo-Induced Metastability in Amorphous Semiconductors; Wiley VCH: Weinheim, Germany, 2003; p. 436. [Google Scholar]
- Tanaka, K.; Shimakawa, K. Amorphous Chalcogenide Semiconductors and Related Materials; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Oyanagi, H.; Tanaka, K.; Tanaka, K. Structural study of amorphous selenium by in situ EXAFS: Observation of photoinduced bond alternation. Phys. Rev. B 1997, 55, 726–734. [Google Scholar] [CrossRef]
- Kolobov, A.V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Goudsmit, S.A.; Richards, P.I. The Order of Electron Shells in Ionized Atoms. Proc. Natl. Acad. Sci. USA 1964, 51, 664–671, Erratum in Proc. Natl. Acad. Sci. USA 1964, 51, 906. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, P. Is the Periodic Table all right (“PT OK”)? EPJ Web Conf. 2016, 131, 01001. [Google Scholar] [CrossRef]
- Klechkovskii, V. On the First Appearance of Atomic Electrons With l, n, nr and n + l Given. J. Exp. Theor. Phys. 1956, 3, 125. [Google Scholar]
- Klechkovskii, V. Justification of the Rule for Successive Filling of (n + l) Groups. J. Exp. Theor. Phys. 1962, 14, 334. [Google Scholar]
- Wilson, J.A.; Salvo, F.J.D.; Mahajan, S. Charge-Density Waves in Metallic, Layered, Transition-Metal Dichalcogenides. Phys. Rev. Lett. 1974, 32, 882–885. [Google Scholar] [CrossRef]
- Wilson, J.; Salvo, F.D.; Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 1975, 24, 117–201. [Google Scholar] [CrossRef]
- McMillan, W.L. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 1975, 12, 1187–1196. [Google Scholar] [CrossRef]
- Gor’kov, L.P. Strong electron-lattice coupling as the mechanism behind charge density wave transformations in transition-metal dichalcogenides. Phys. Rev. B 2012, 85, 165142. [Google Scholar] [CrossRef]
- Shen, D.W.; Xie, B.P.; Zhao, J.F.; Yang, L.X.; Fang, L.; Shi, J.; He, R.H.; Lu, D.H.; Wen, H.H.; Feng, D.L. Novel Mechanism of a Charge Density Wave in a Transition Metal Dichalcogenide. Phys. Rev. Lett. 2007, 99, 216404. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Calleja, E.; Alldredge, J.; Zhu, X.; Li, L.; Lu, W.; Sun, Y.; Wolf, T.; Berger, H.; McElroy, K. Microscopic evidence for strong periodic lattice distortion in two-dimensional charge-density wave systems. Phys. Rev. B 2014, 89, 165140. [Google Scholar] [CrossRef]
- Neto, A.H.C. Charge Density Wave, Superconductivity and Anomalous Metallic Behavior in 2D Transition Metal Dichalcogenides. Phys. Rev. Lett. 2001, 86, 4382–4385. [Google Scholar] [CrossRef]
- Hellmann, S.; Rohwer, T.; Kalläne, M.; Hanff, K.; Sohrt, C.; Stange, A.; Carr, A.; Murnane, M.; Kapteyn, H.; Kipp, L.; et al. Time-domain classification of charge-density-wave insulators. Nat. Commun. 2012, 3, 1069. [Google Scholar] [CrossRef]
- Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 2011, 23, 213001. [Google Scholar] [CrossRef]
- Hooper, H.O.; de Graaf, A.M. (Eds.) Amorphous Magnetism; Springer: New York, NY, USA, 1973. [Google Scholar] [CrossRef]
- Levy, R.A.; Hasegawa, R. (Eds.) Amorphous Magnetism II; Springer: New York, NY, USA, 1977. [Google Scholar] [CrossRef]
- Kaneyoshi, T. Amorphous Magnetism; CRC Press: Boca Raton, FL, USA, 1984; p. 190. [Google Scholar]
- Fairman, R.; Ushkov, B. (Eds.) Semiconducting Chalcogenide Glass II; Academic Press: Cambridge, MA, USA, 2004; Volume 79, p. 307. [Google Scholar]
- Konstantinou, K.; Mavračić, J.; Mocanu, F.C.; Elliott, S.R. Simulation of Phase-Change-Memory and Thermoelectric Materials using Machine-Learned Interatomic Potentials: Sb2Te3. Phys. Status Solidi (b) 2020, 258, 2000416. [Google Scholar] [CrossRef]
- Mocanu, F.C.; Konstantinou, K.; Mavračić, J.; Elliott, S.R. On the Chemical Bonding of Amorphous Sb2Te3. Phys. Status Solidi Rapid Res. Lett. 2020, 15, 2000485. [Google Scholar] [CrossRef]
- Mullen, D.J.E.; Nowacki, W. Refinement of the crystal structures of realgar, AsS and orpiment, As2S3. Z. Krist. 1972, 136, 48–65. [Google Scholar] [CrossRef]
- Caravati, S.; Bernasconi, M.; Kühne, T.D.; Krack, M.; Parrinello, M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 2007, 91, 171906. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in C; Cambridge University Press: Cambridge, UK, 1992; p. 994. [Google Scholar]
- Shanno, D.F. Conjugate Gradient Methods with Inexact Searches. Math. Oper. Res. 1978, 3, 244–256. [Google Scholar] [CrossRef]
- Eyert, V. A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences. J. Comput. Phys. 1996, 124, 271–285. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005. [Google Scholar] [CrossRef] [PubMed]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Krist. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef] [PubMed]
- Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders and Covalent Bond Energies. J. Chem. Phys. 1955, 23, 1841–1846. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Knotek, P.; Kutálek, P.; Černošková, E.; Vlček, M.; Tichý, L. The density, nanohardness and some optical properties of As–S and As–Se chalcogenide bulk glasses and thin films. RSC Adv. 2020, 10, 42744–42753. [Google Scholar] [CrossRef]
- Perdew, J.P. Density functional theory and the band gap problem. Int. J. Quantum Chem. 2009, 28, 497–523. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef]
- Krbal, M.; Prokop, V.; Kononov, A.A.; Pereira, J.R.; Mistrik, J.; Kolobov, A.V.; Fons, P.J.; Saito, Y.; Hatayama, S.; Shuang, Y.; et al. Amorphous-to-Crystal Transition in Quasi-Two-Dimensional MoS2: Implications for 2D Electronic Devices. ACS Appl. Nano Mater. 2021, 4, 8834–8844. [Google Scholar] [CrossRef]
- Huo, N.; Li, Y.; Kang, J.; Li, R.; Xia, Q.; Li, J. Edge-states ferromagnetism of WS2 nanosheets. Appl. Phys. Lett. 2014, 104, 202406. [Google Scholar] [CrossRef]
- Kolomiets, B. Electrical and optical properties of vitreous chalcogenide semiconductor films. Thin Solid Films 1976, 34, 1–7. [Google Scholar] [CrossRef]
- Ignatiev, F.; Karpov, V.; Klinger, M. Atomic critical potentials and structure of non-single-well potentials in glasses. J. Non-Cryst. Solids 1983, 55, 307–323. [Google Scholar] [CrossRef]
Type of Structure | Density (g/cm) |
---|---|
c-As2S3 (experiment) [26] | 3.494 |
a-As2S3 (experiment) [46] | 3.193 |
a-As2S3 mq-GOpt | 3.095 |
a-As2S3:V mq-GOpt | 3.159 |
a-As2S3:Mo mq-GOpt | 3.202 |
a-As2S3:W mq-GOpt | 3.321 |
Melt-Quenched | Melt-Quenched and Relaxed | |||||
---|---|---|---|---|---|---|
Dopant | ISD (ℏ/2) | IMSD (ℏ/2) | Magnetic Ordering | ISD (ℏ/2) | IMSD (ℏ/2) | Magnetic Ordering |
Mo (4s4p4d5s) | 2.00 | 2.58 | ferrimagnetic | 2.00 | 2.54 | ferrimagnetic |
V (3s3p3d4s) | 2.97 | 4.36 | ferrimagnetic | 1.00 | 1.88 | ferrimagnetic |
W (5s5p5d6s) | 0.00 | 1.45 | antiferromagnetic | 0.00 | 0.00 | paramagnetic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, V.G.; Gavrikov, A.A.; Krbal, M.; Trepakov, V.A.; Kolobov, A.V. Amorphous As2S3 Doped with Transition Metals: An Ab Initio Study of Electronic Structure and Magnetic Properties. Nanomaterials 2023, 13, 896. https://doi.org/10.3390/nano13050896
Kuznetsov VG, Gavrikov AA, Krbal M, Trepakov VA, Kolobov AV. Amorphous As2S3 Doped with Transition Metals: An Ab Initio Study of Electronic Structure and Magnetic Properties. Nanomaterials. 2023; 13(5):896. https://doi.org/10.3390/nano13050896
Chicago/Turabian StyleKuznetsov, Vladimir G., Anton A. Gavrikov, Milos Krbal, Vladimir A. Trepakov, and Alexander V. Kolobov. 2023. "Amorphous As2S3 Doped with Transition Metals: An Ab Initio Study of Electronic Structure and Magnetic Properties" Nanomaterials 13, no. 5: 896. https://doi.org/10.3390/nano13050896
APA StyleKuznetsov, V. G., Gavrikov, A. A., Krbal, M., Trepakov, V. A., & Kolobov, A. V. (2023). Amorphous As2S3 Doped with Transition Metals: An Ab Initio Study of Electronic Structure and Magnetic Properties. Nanomaterials, 13(5), 896. https://doi.org/10.3390/nano13050896