Interface Engineering Modulated Valley Polarization in MoS2/hBN Heterostructure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure of MoS2 and the Coupled Valley-Spin Excitonic Transition Rules
3.2. Steady-State Circularly Polarized PL Spectra
3.3. Time-Resolved Circularly Polarized PL Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number of Layer | E12g (cm−1) | A1g (cm−1) | Δ (cm−1) |
---|---|---|---|
1 | 383.4 | 403.2 | 19.8 |
2 | 382.3 | 403.2 | 20.9 |
3 | 382.1 | 403.5 | 21.4 |
Appendix B
Appendix C
References
- Wang, Q.H.; Bedoya-Pinto, A.; Blei, M.; Dismukes, A.H.; Hamo, A.; Jenkins, S.; Koperski, M.; Liu, Y.; Sun, Q.-C.; Telford, E.J.; et al. The magnetic genome of two-dimensional van der waals materials. ACS Nano 2022, 16, 6960–7079. [Google Scholar] [CrossRef]
- Zhang, D.; Schoenherr, P.; Sharma, P.; Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 2022, 8, 25–40. Available online: https://www.nature.com/articles/s41578-022-00484-3 (accessed on 17 October 2022). [CrossRef]
- Chu, J.; Wang, Y.; Wang, X.; Hu, K.; Rao, G.; Gong, C.; Wu, C.; Hong, H.; Wang, X.; Liu, K.; et al. 2D polarized materials: Ferromagnetic, ferrovalley, ferroelectric materials, and related heterostructures. Adv. Mater. 2021, 33, 2004469. [Google Scholar] [CrossRef]
- Sheng, K.; Chen, Q.; Yuan, H.K.; Wang, Z.Y. Monolayer CeI2: An intrinsic room-temperature ferrovalley semiconductor. Phys. Rev. B 2022, 105, 075304. Available online: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.075304 (accessed on 14 February 2022). [CrossRef]
- Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809. Available online: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.236809 (accessed on 7 December 2007). [CrossRef] [Green Version]
- Xiao, D.; Chang, M.-C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959. Available online: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1959 (accessed on 6 July 2010). [CrossRef] [Green Version]
- Han, W. Perspectives for spintronics in 2D materials. APL Mater. 2016, 4, 032401. [Google Scholar] [CrossRef]
- Ahn, E.C. 2D materials for spintronic devices. npj 2d Mater. Appl. 2020, 4, 17. Available online: https://www.nature.com/articles/s41699-020-0152-0 (accessed on 18 June 2020). [CrossRef]
- Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055. Available online: https://www.nature.com/articles/natrevmats201655 (accessed on 23 August 2016). [CrossRef]
- Mak, K.F.; He, K.; Shan, J.; Heinz, T.F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498. Available online: https://www.nature.com/articles/nnano.2012.96 (accessed on 17 June 2012). [CrossRef]
- Cao, T.; Wang, G.; Han, W.; Ye, H.; Zhu, C.; Shi, J.; Niu, Q.; Tan, P.; Wang, E.; Liu, B. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887. Available online: https://www.nature.com/articles/ncomms1882 (accessed on 6 June 2012). [CrossRef] [Green Version]
- Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493. Available online: https://www.nature.com/articles/nnano.2012.95 (accessed on 17 June 2012). [CrossRef]
- Mak, K.F.; McGill, K.L.; Park, J.; McEuen, P.L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Xiao, J.; Wang, H.; Ye, Z.; Zhu, H.; Zhao, M.; Wang, Y.; Zhao, J.; Yin, X.; Zhang, X. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol. 2016, 11, 598–602. Available online: https://www.nature.com/articles/nnano.2016.49 (accessed on 4 April 2016). [CrossRef]
- Liu, X.; Hersam, M.C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684. Available online: https://www.nature.com/articles/s41578-019-0136-x (accessed on 19 August 2019). [CrossRef]
- Xu, X.; Yao, W.; Xiao, D.; Heinz, T.F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350. Available online: https://www.nature.com/articles/nphys2942 (accessed on 30 April 2014). [CrossRef]
- Ciarrocchi, A.; Tagarelli, F.; Avsar, A.; Kis, A. Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics. Nat. Rev. Mater. 2022, 7, 449–464. Available online: https://www.nature.com/articles/s41578-021-00408-7 (accessed on 31 January 2022). [CrossRef]
- Wu, X.; Chen, X.; Yang, R.; Zhan, J.; Ren, Y.; Li, K. Recent Advances on tuning the interlayer coupling and properties in van Der Waals heterostructures. Small 2022, 18, 2105877. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.J.; Kim, Y.S.; Kim, Y.H.; Kim, J.C.; Huh, W.; Lee, J.; Park, S.; Jeong, H.Y.; Kim, Y.D.; et al. Remote modulation doping in van der Waals heterostructure transistors. Nat. Electron. 2021, 4, 664–670. Available online: https://www.nature.com/articles/s41928-021-00641-6 (accessed on 13 September 2021). [CrossRef]
- Liu, L.; Kong, L.; Li, Q.; He, C.; Ren, L.; Tao, Q.; Yang, X.; Lin, J.; Zhao, B.; Li, Z.; et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 2021, 4, 342–347. Available online: https://www.nature.com/articles/s41928-021-00566-0 (accessed on 26 April 2021). [CrossRef]
- Tao, Q.; Wu, R.; Li, Q.; Kong, L.; Chen, Y.; Jiang, J.; Lu, Z.; Li, B.; Li, W.; Li, Z.; et al. Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures. Nat. Commun. 2021, 12, 1825. Available online: https://www.nature.com/articles/s41467-021-22118-y (accessed on 23 March 2021). [CrossRef]
- Chen, Y.; Ma, J.; Liu, Z.; Li, J.; Duan, X.; Li, D. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 15154–15160. [Google Scholar] [CrossRef]
- Kumar, A.; Yagodkin, D.; Stetzuhn, N.; Kovalchuk, S.; Melnikov, A.; Elliott, P.; Sharma, S.; Gahl, C.; Bolotin, K.I. Spin/valley coupled dynamics of electrons and holes at the MoS2-MoSe2 interface. Nano Lett. 2021, 21, 7123–7130. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, H.; Wang, W.; Sheng, B.; Zhang, K.; Wang, Y.; Song, Q.; Mao, N.; Li, Y.; Wang, X. Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate. Small 2016, 12, 198–203. [Google Scholar] [CrossRef]
- Wan, Y.; Zhang, H.; Zhang, K.; Wang, Y.; Sheng, B.; Wang, X.; Dai, L. Large-scale synthesis and systematic photoluminescence properties of monolayer MoS2 on fused silica. ACS Appl. Mater. Interfaces 2016, 8, 18570–18576. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Z.; Du, L.; Zhang, J.; Shi, J.; Chen, W.; Chen, P.; Liao, M.; Zhao, J.; Meng, J.; et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 2017, 13, 1603005. [Google Scholar] [CrossRef]
- Dean, C.R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602. Available online: https://www.nature.com/articles/nature12186 (accessed on 15 May 2013). [CrossRef] [Green Version]
- Hunt, B.; Sanchez-Yamagishi, J.D.; Young, A.F.; Yankowitz, M.; LeRoy, B.J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- Kośmider, K.; González, J.W.; Fernández-Rossier, J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 2013, 88, 245436. Available online: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.245436 (accessed on 23 December 2013). [CrossRef] [Green Version]
- Ochoa, H.; Roldán, R. Spin-orbit-mediated spin relaxation in monolayer MoS2. Phys. Rev. B 2013, 87, 245421. Available online: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.245421 (accessed on 17 June 2013). [CrossRef] [Green Version]
- Liu, G.-B.; Shan, W.-Y.; Yao, Y.; Yao, W.; Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 2013, 88, 085433. Available online: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.085433 (accessed on 26 August 2013). [CrossRef] [Green Version]
- Stier, A.V.; McCreary, K.M.; Jonker, B.T.; Kono, J.; Crooker, S.A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 2016, 7, 10643. Available online: https://www.nature.com/articles/ncomms10643 (accessed on 9 February 2016). [CrossRef] [PubMed] [Green Version]
- McCreary, K.M.; Currie, M.; Hanbicki, A.T.; Chuang, H.-J.; Jonker, B.T. Understanding variations in circularly polarized photoluminescence in monolayer transition metal dichalcogenides. ACS Nano 2017, 11, 7988–7994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-L.; Miyazaki, H.; Song, H.; Kuramochi, H.; Nakaharai, S.; Tsukagoshi, K. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. ACS Nano 2012, 6, 7381–7388. [Google Scholar] [CrossRef] [Green Version]
- Maestre, C.; Toury, B.; Steyer, P.; Garnier, V.; Journet, C. Hexagonal boron nitride: A review on selfstanding crystals synthesis towards 2D nanosheets. J. Phys. Mater. 2021, 4, 044018. Available online: https://iopscience.iop.org/article/10.1088/2515-7639/ac2b87/meta (accessed on 18 October 2021). [CrossRef]
- Ross, J.S.; Wu, S.; Yu, H.; Ghimire, N.J.; Jones, A.M.; Aivazian, G.; Yan, J.; Mandrus, D.G.; Xiao, D.; Yao, W.; et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474. Available online: https://www.nature.com/articles/ncomms2498 (accessed on 12 February 2013). [CrossRef] [Green Version]
- Mak, K.F.; He, K.; Lee, C.; Lee, G.H.; Hone, J.; Heinz, T.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211. Available online: https://www.nature.com/articles/nmat3505 (accessed on 2 December 2012). [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhang, H.; Li, Y.; Zhao, Y.; Liu, M.; Yang, Y.; Yao, J.; Min, S.; Kan, E.; Wan, Y. Interface Engineering Modulated Valley Polarization in MoS2/hBN Heterostructure. Nanomaterials 2023, 13, 861. https://doi.org/10.3390/nano13050861
Li F, Zhang H, Li Y, Zhao Y, Liu M, Yang Y, Yao J, Min S, Kan E, Wan Y. Interface Engineering Modulated Valley Polarization in MoS2/hBN Heterostructure. Nanomaterials. 2023; 13(5):861. https://doi.org/10.3390/nano13050861
Chicago/Turabian StyleLi, Fang, Hui Zhang, You Li, Yibin Zhao, Mingyan Liu, Yunwei Yang, Jiamin Yao, Shaolong Min, Erjun Kan, and Yi Wan. 2023. "Interface Engineering Modulated Valley Polarization in MoS2/hBN Heterostructure" Nanomaterials 13, no. 5: 861. https://doi.org/10.3390/nano13050861
APA StyleLi, F., Zhang, H., Li, Y., Zhao, Y., Liu, M., Yang, Y., Yao, J., Min, S., Kan, E., & Wan, Y. (2023). Interface Engineering Modulated Valley Polarization in MoS2/hBN Heterostructure. Nanomaterials, 13(5), 861. https://doi.org/10.3390/nano13050861