Effect of Au Nanoparticle Agglomeration on SERS Signal Amplification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aerosol Dry Printing of SERS Structures
2.2. Analytes Deposition
2.3. Spectra Measurements
3. Results and Discussion
3.1. Structural Properties
3.2. Optical Spectra Characterization
3.3. Raman Spectra Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Q.; Li, J.; Wang, X.; Peng, H.; Xiong, H.; Chen, L. Strategies of Molecular Imprinting-Based Fluorescence Sensors for Chemical and Biological Analysis. Biosens. Bioelectron. 2018, 112, 54–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, R.; Yang, X.; Qi, H.; Zhang, C. Recent Advances in Electrogenerated Chemiluminescence Biosensing Methods for Pharmaceuticals. J. Pharm. Anal. 2019, 9, 9–19. [Google Scholar] [CrossRef]
- Tabasi, O.; Falamaki, C. Recent Advancements in the Methodologies Applied for the Sensitivity Enhancement of Surface Plasmon Resonance Sensors. Anal. Methods 2018, 10, 3906–3925. [Google Scholar] [CrossRef]
- Bassols-Cornudella, B.; Ramirez-Priego, P.; Soler, M.; Estévez, M.-C.; Luis-Ravelo, H.J.D.; Cardenosa-Rubio, M.; Lechuga, L.M. Novel Sensing Algorithm for Linear Read-Out of Bimodal Waveguide Interferometric Biosensors. J. Light. Technol. JLT 2022, 40, 237–244. [Google Scholar] [CrossRef]
- Pallares, R.M.; Thanh, N.T.K.; Su, X. Sensing of Circulating Cancer Biomarkers with Metal Nanoparticles. Nanoscale 2019, 11, 22152–22171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-Enhanced Raman Spectroscopy. Nat. Rev. Methods Prim. 2022, 1, 601–626. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodelón, G.; Pastoriza-Santos, I. Recent Progress in Surface-Enhanced Raman Scattering for the Detection of Chemical Contaminants in Water. Front. Chem. 2020, 8, 478. [Google Scholar] [CrossRef]
- Nikelshparg, E.I.; Baizhumanov, A.A.; Bochkova, Z.V.; Novikov, S.M.; Yakubovsky, D.I.; Arsenin, A.V.; Volkov, V.S.; Goodilin, E.A.; Semenova, A.A.; Sosnovtseva, O.; et al. Detection of Hypertension-Induced Changes in Erythrocytes by SERS Nanosensors. Biosensors 2022, 12, 32. [Google Scholar] [CrossRef]
- Li, P.; Long, F.; Chen, W.; Chen, J.; Chu, P.K.; Wang, H. Fundamentals and Applications of Surface-Enhanced Raman Spectroscopy–Based Biosensors. Curr. Opin. Biomed. Eng. 2020, 13, 51–59. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, Y.; Hang, L.; Li, H.; Liu, G.; Zhang, X.; Lyu, X.; Cai, W.; Li, Y. Periodic Porous Alloyed Au–Ag Nanosphere Arrays and Their Highly Sensitive SERS Performance with Good Reproducibility and High Density of Hotspots. ACS Appl. Mater. Interfaces 2018, 10, 9792–9801. [Google Scholar] [CrossRef]
- Simonenko, N.P.; Musaev, A.G.; Simonenko, T.L.; Gorobtsov, P.Y.; Volkov, I.A.; Gulin, A.A.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Hydrothermal Synthesis of Ag Thin Films and Their SERS Application. Nanomaterials 2022, 12, 136. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhou, F.; Li, C.; Zhang, T.; Zhang, H.; Cai, W.; Li, Y. Black Gold: Plasmonic Colloidosomes with Broadband Absorption Self-Assembled from Monodispersed Gold Nanospheres by Using a Reverse Emulsion System. Angew. Chem. Int. Ed. 2015, 54, 9596–9600. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Y.; Wen, X.; Zhu, J.; Bai, X.; Qi, Y.; Yang, H. Surface Plasmons and SERS Application of Au Nanodisk Array and Au Thin Film Composite Structure. Opt. Quant. Electron. 2020, 52, 238. [Google Scholar] [CrossRef]
- Garcia-Leis, A.; Garcia-Ramos, J.V.; Sanchez-Cortes, S. Silver Nanostars with High SERS Performance. J. Phys. Chem. C 2013, 117, 7791–7795. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, M.; Zhou, F.; Liu, D.; Liu, G.; Duan, G.; Cai, W.; Li, Y. Physical Deposition Improved SERS Stability of Morphology Controlled Periodic Micro/Nanostructured Arrays Based on Colloidal Templates. Small 2015, 11, 844–853. [Google Scholar] [CrossRef]
- Tian, Z.Q.; Ren, B.; Mao, B.W. Extending Surface Raman Spectroscopy to Transition Metal Surfaces for Practical Applications. 1. Vibrational Properties of Thiocyanate and Carbon Monoxide Adsorbed on Electrochemically Activated Platinum Surfaces. J. Phys. Chem. B 1997, 101, 1338–1346. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Hao, Z.; Cao, H.; Wei, S.; Jiao, T.; Wang, M. Study on Annealed Graphene Oxide Nano-Sheets for Improving the Surface Enhanced Fluorescence of Silver Nanoparticles. Opt. Laser Technol. 2023, 160, 109054. [Google Scholar] [CrossRef]
- Yuan, W.; Wu, Y.; Zhang, Z.; Shi, G.; Han, W.; Li, K.; Gu, J.; Chen, C.; Ge, J.; Zhou, W.; et al. Optimization of Surface Enhanced Raman Scattering Performance Based on Ag Nanoparticle-Modified Vanadium-Titanium Nanorods with Tunable Nanogaps. Opt. Express OE 2022, 30, 38613–38629. [Google Scholar] [CrossRef]
- Khabarov, K.; Kornyushin, D.; Masnaviev, B.; Tuzhilin, D.; Saprykin, D.; Efimov, A.; Ivanov, V. The Influence of Laser Sintering Modes on the Conductivity and Microstructure of Silver Nanoparticle Arrays Formed by Dry Aerosol Printing. Appl. Sci. 2020, 10, 246. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, V.; Lizunova, A.; Rodionova, O.; Kostrov, A.; Kornyushin, D.; Aybush, A.; Golodyayeva, A.; Efimov, A.; Nadtochenko, V. Aerosol Dry Printing for SERS and Photoluminescence-Active Gold Nanostructures Preparation for Detection of Traces in Dye Mixtures. Nanomaterials 2022, 12, 448. [Google Scholar] [CrossRef] [PubMed]
- Simonenko, N.P.; Solovey, V.R.; Shumikhin, K.V.; Lizunova, A.A.; Lisovskii, S.V.; Liubavskaya, E.A.; Seregina, T.V.; Basova, I.G.; Dyakonova, Y.B.; Simonenko, T.L.; et al. A Study of “The Portrait of F.P. Makerovsky in a Masquerade Costume” by Dmitry Levitsky from the Collection of the State Tretyakov Gallery. Herit. Sci. 2020, 8, 6. [Google Scholar] [CrossRef]
- Khabarov, K.; Urazov, M.; Lizunova, A.; Kameneva, E.; Efimov, A.; Ivanov, V. Influence of Ag Electrodes Asymmetry Arrangement on Their Erosion Wear and Nanoparticle Synthesis in Spark Discharge. Appl. Sci. 2021, 11, 4147. [Google Scholar] [CrossRef]
- Lizunova, A.A.; Efimov, A.A.; Arsenov, P.V.; Ivanov, V.V. Influence of the Sintering Temperature on Morphology and Particle Size of Silver Synthesized by Spark Discharge. IOP Conf. Ser. Mater. Sci. Eng. 2018, 307, 012081. [Google Scholar] [CrossRef]
- Khabarov, K.; Nouraldeen, M.; Tikhonov, S.; Lizunova, A.; Efimov, A.; Ivanov, V. Modification of Aerosol Gold Nanoparticles by Nanosecond Pulsed-Periodic Laser Radiation. Nanomaterials 2021, 11, 2701. [Google Scholar] [CrossRef] [PubMed]
- Khabarov, K.M.; Nouraldeen, M.; Lizunova, A.A.; Urazov, M.N.; Ivanov, V.V. Formation of Planar Plasmon Microstructures by Dry Aerosol Printing. J. Phys. Conf. Ser. 2021, 2086, 012147. [Google Scholar] [CrossRef]
- Khabarov, K.; Nouraldeen, M.; Tikhonov, S.; Lizunova, A.; Seraya, O.; Filalova, E.; Ivanov, V. Comparison of Aerosol Pt, Au and Ag Nanoparticles Agglomerates Laser Sintering. Materials 2022, 15, 227. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Lai, K.; Rasco, B.A.; Fan, Y. Analysis of Trace Methylene Blue in Fish Muscles Using Ultra-Sensitive Surface-Enhanced Raman Spectroscopy. Food Control 2016, 65, 99–105. [Google Scholar] [CrossRef]
- Khabarov, K.M.; Efimov, A.A.; Ivanov, V.V. The Study of Radiation Attenuation in Disordered Silver Nanoparticles Arrays Formed by Dry Aerosol Printing. J. Phys. Conf. Ser. 2020, 1695, 012104. [Google Scholar] [CrossRef]
- Kelesidis, G.A.; Gao, D.; Starsich, F.H.L.; Pratsinis, S.E. Light Extinction by Agglomerates of Gold Nanoparticles: A Plasmon Ruler for Sub-10 Nm Interparticle Distances. Anal. Chem. 2022, 94, 5310–5316. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.-N.; Man, S.-Q. Surface-Enhanced Raman Scattering of Methylene Blue Adsorbed on Cap-Shaped Silver Nanoparticles. Chem. Phys. Lett. 2007, 447, 305–309. [Google Scholar] [CrossRef]
- Chettri, P.; Vendamani, V.S.; Tripathi, A.; Singh, M.K.; Pathak, A.P.; Tiwari, A. Green Synthesis of Silver Nanoparticle-Reduced Graphene Oxide Using Psidium Guajava and Its Application in SERS for the Detection of Methylene Blue. Appl. Surf. Sci. 2017, 406, 312–318. [Google Scholar] [CrossRef]
- Anastasopoulos, J.A.; Soto Beobide, A.; Manikas, A.C.; Voyiatzis, G.A. Quantitative Surface-Enhanced Resonance Raman Scattering Analysis of Methylene Blue Using Silver Colloid. J. Raman Spectrosc. 2017, 48, 1762–1770. [Google Scholar] [CrossRef]
- López-Muñoz, G.A.; Pescador-Rojas, J.A.; Ortega-Lopez, J.; Salazar, J.S.; Balderas-López, J.A. Thermal Diffusivity Measurement of Spherical Gold Nanofluids of Different Sizes/Concentrations. Nanoscale Res. Lett. 2012, 7, 423. [Google Scholar] [CrossRef] [Green Version]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer Science & Business Media: Berlin, Germany, 2007; ISBN 978-0-387-37825-1. [Google Scholar]
- Yang, G.; Fang, X.; Jia, Q.; Gu, H.; Li, Y.; Han, C.; Qu, L.-L. Fabrication of Paper-Based SERS Substrates by Spraying Silver and Gold Nanoparticles for SERS Determination of Malachite Green, Methylene Blue, and Crystal Violet in Fish. Microchim. Acta 2020, 187, 310. [Google Scholar] [CrossRef] [PubMed]
Aerosol Flow, mL/min | Individual NP Fraction, % | Difference, % (Type 3–Type 2) | |
---|---|---|---|
Type 3 | Type 2 | ||
50 | 51 ± 3 | 22 ± 1 | 29 |
200 | 76 ± 4 | 65 ± 3 | 11 |
400 | 76 ± 4 | 68 ± 3 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khabarov, K.; Filalova, E.; Nouraldeen, M.; Kameneva, E.; Musaev, A.; Tikhonov, S.; Ivanov, V. Effect of Au Nanoparticle Agglomeration on SERS Signal Amplification. Nanomaterials 2023, 13, 812. https://doi.org/10.3390/nano13050812
Khabarov K, Filalova E, Nouraldeen M, Kameneva E, Musaev A, Tikhonov S, Ivanov V. Effect of Au Nanoparticle Agglomeration on SERS Signal Amplification. Nanomaterials. 2023; 13(5):812. https://doi.org/10.3390/nano13050812
Chicago/Turabian StyleKhabarov, Kirill, Emiliia Filalova, Messan Nouraldeen, Ekaterina Kameneva, Andrey Musaev, Sergei Tikhonov, and Victor Ivanov. 2023. "Effect of Au Nanoparticle Agglomeration on SERS Signal Amplification" Nanomaterials 13, no. 5: 812. https://doi.org/10.3390/nano13050812
APA StyleKhabarov, K., Filalova, E., Nouraldeen, M., Kameneva, E., Musaev, A., Tikhonov, S., & Ivanov, V. (2023). Effect of Au Nanoparticle Agglomeration on SERS Signal Amplification. Nanomaterials, 13(5), 812. https://doi.org/10.3390/nano13050812