Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Measurements
2.3. Preparation of GO Sheets
2.4. Introduction of RAFT Functionalities onto GO Sheets
2.5. Preparation of GO-MIPs
2.6. Batch Mode Adsorption Studies
2.7. Fabrication Process of GO-MIPs Sensor
2.8. Electrochemical Experiments
3. Results and Discussion
3.1. Characterization of the Obtained GO-MIP Nanocomposites
3.2. Adsorption Behavior of GO-MIPs for 4-MEC
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherms
3.2.3. Adsorption Selectivity
3.2.4. Adsorption Repeatability
3.3. Electrochemical Behaviour of GO-MIPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans-Brown, M.; Sedefov, R. New Psychoactive Substances: Driving Greater Complexity into the Drug Problem. Addiction 2017, 112, 36–38. [Google Scholar] [CrossRef]
- Shafi, A.; Berry, A.J.; Sumnall, H.; Wood, D.M.; Tracy, D.K. New Psychoactive Substances: A Review and Updates. Ther. Adv. Psychopharmacol. 2020, 10, 1–21. [Google Scholar] [CrossRef]
- Simão, A.Y.; Antunes, M.; Cabral, E.; Oliveira, P.; Rosendo, L.M.; Brinca, A.T.; Alves, E.; Marques, H.; Rosado, T.; Passarinha, L.; et al. An Update on the Implications of New Psychoactive Substances in Public Health. Int. J. Environ. Res. Public Health 2022, 19, 4869. [Google Scholar] [CrossRef]
- UNODC. World Drug Report 2022. 2022. Available online: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2022.html (accessed on 22 June 2022).
- Almeida, A.S.; Silva, B.; Pinho, P.G.d.; Remião, F.; Fernandes, C. Synthetic Cathinones: Recent Developments, Enantioselectivity Studies and Enantioseparation Methods. Molecules 2022, 27, 2057. [Google Scholar] [CrossRef]
- UNODC. Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials. 2020. Available online: https://www.unodc.org/documents/scientific/Recommended_methods_for_the_Identification_and_Analysis_of_Synthetic_Cathinones_in_Seized_Materials-Rev..pdf (accessed on 24 April 2020).
- Jankovics, P.; Varadi, A.; Lohner, S.; Nemeth-Palotas, J.; Koszegi-Szalai, H. Identification and Characterization of the New Designer Drug 4’Methylethcathinone (4-MEC) and Elaboration of a Novel Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Screening Method for Seven Different Methcathinone Analogs. Forensic Sci. Int. 2011, 210, 213–220. [Google Scholar] [CrossRef]
- Marinetti, L.J.; Antonides, H.M. Analysis of Synthetic Cathinones Commonly Found in Bath Salts in Human Performance and Postmortem Toxicology: Method Development, Drug Distribution and Interpretation of Results. J. Anal. Toxicol. 2013, 37, 135–146. [Google Scholar] [CrossRef]
- Concheiro, M.; Anizan, S.; Ellefsen, K.; Huestis, M.A. Simultaneous Quantification of 28 Synthetic Cathinones and Metabolites in Urine by Liquid Chromatography-High Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 9437–9448. [Google Scholar] [CrossRef]
- Qian, Z.; Jia, W.; Li, T.; Hua, Z.; Liu, C. Identification of Five Pyrrolidinyl Substituted Cathinones and the Collision-Induced Dissociation of Electrospray-Generated Pyrrolidinyl Substituted Cathinones. Drug Test. Anal. 2017, 9, 778–787. [Google Scholar] [CrossRef]
- Gibbons, S.; Zloh, M. An Analysis of the ‘Legal High’ Mephedrone. Bioorg. Med. Chem. Lett. 2010, 20, 4135–4139. [Google Scholar] [CrossRef]
- Maheux, C.R.; Copeland, C.R. Chemical Analysis of Two New Designer Drugs: Buphedrone and Pentedrone. Drug Test. Anal. 2012, 4, 17–23. [Google Scholar] [CrossRef]
- Braz, A.; Silva, C.S.; Peixoto, A.C.; Pimentel, M.F.; Pereira, G.; Braga, P.C.C.S.; Martini, A.L.; Alcântara, T.L.F. Preliminary Study on the Identification of Synthetic Cathinones in Street Seized Samples by Raman Spectroscopy and Chemometrics. J. Raman Spectrosc. 2021, 52, 901–913. [Google Scholar] [CrossRef]
- Assi, S.; Guirguis, A.; Halsey, S.; Fergus, S.; Stair, J.L. Analysis of ‘Legal High’ Substances and Common Adulterants Using Handheld Spectroscopic Techniques. Anal. Methods 2015, 7, 736–746. [Google Scholar] [CrossRef]
- Mabbott, S.; Correa, E.; Cowcher, D.P.; Allwood, J.W.; Goodacre, R. Optimization of Parameters for the Quantitative Surface-Enhanced Raman Scattering Detection of Mephedrone Using a Fractional Factorial Design and a Portable Raman Spectrometer. Anal. Chem. 2013, 85, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, R.F.; Ou, F.; Sevo, P.; Petruzzella, M.; de Ridder, R.; van Klinken, A.; Hakkel, K.D.; van Elst, D.M.J.; van Veldhoben, R.; Pagliano, F.; et al. On-site Illicit-Drug Detection with an Integrated Near-Infrared Spectral Sensor: A Proof of Concept. Talanta 2022, 245, 123441. [Google Scholar] [CrossRef]
- Smith, J.P.; Sutcliffe, O.B.; Banks, C.E. An Overview of Recent Developments in the Analytical Detection of New Psychoactive Substances (NPSs). Analyst 2015, 140, 4932–4948. [Google Scholar] [CrossRef]
- Smith, J.P.; Metters, J.P.; Khreit, O.I.G.; Sutcliffe, O.B.; Banks, C.E. Forensic Electrochemistry Applied to the Sensing of New Psychoactive Substances: Electroanalytical Sensing of Synthetic Cathinones and Analytical Validation in the Quantification of Seized Street Samples. Anal. Chem. 2014, 86, 9985–9992. [Google Scholar] [CrossRef]
- Smith, J.P.; Metters, J.P.; Irving, C.; Sutcliffe, O.B.; Banks, C.E. Forensic Electrochemistry: The Electroanalytical Sensing of Synthetic Cathinone-Derivatives and their Accompanying Adulterants in “Legal High” Products. Analyst 2014, 139, 389–400. [Google Scholar] [CrossRef]
- Elbardisy, H.M.; Ferrari, A.G.M.; Foster, C.W.; Sutcliffe, O.B.; Brownson, D.A.C.; Belal, T.S.; Talaat, W.; Daabees, H.G.; Banks, C.E. Forensic Electrochemistry: The Electroanalytical Sensing of Mephedrone Metabolites. ACS Omega 2019, 4, 1947–1954. [Google Scholar] [CrossRef]
- Arrieiro, M.O.B.; Arantes, L.C.; Moreira, D.A.R.; Pimentel, D.M.; Lima, C.D.; Costa, L.M.F.; Verly, R.M.; dos Santos, W.T.P. Electrochemical Detection of Eutylone Using Screen-Printed Electrodes: Rapid and Simple Screening Method for Application in Forensic Samples. Electrochim. Acta 2022, 412, 140106. [Google Scholar] [CrossRef]
- Jamieson, O.; Soares, T.C.C.; de Faria, B.A.; Hudson, A.; Mecozzi, F.; Rowley-Neale, S.J.; Banks, C.E.; Gruber, J.; Novakovic, K.; Peeters, M.; et al. Screen Printed Electrode Based Detection Systems for the Antibiotic Amoxicillin in Aqueous Samples Utilising Molecularly Imprinted Polymers as Synthetic Receptors. Chemosensors 2020, 8, 5. [Google Scholar] [CrossRef]
- Lowdon, J.W.; Alkirkit, S.M.O.; Mewis, R.E.; Fulton, D.; Banks, C.E.; Sutcliffffe, O.B. Engineering Molecularly Imprinted Polymers (MIPs) for the Selective Extraction and Quantifification of the Novel Psychoactive Substance (NPS) Methoxphenidine and its Regioisomers. Analyst 2018, 143, 2002–2007. [Google Scholar] [CrossRef] [PubMed]
- Elfadil, D.; Lamaoui, A.; Pelle, F.D.; Amine, A.; Compagnone, D. Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis. Molecules 2021, 26, 4607. [Google Scholar] [CrossRef] [PubMed]
- Pardeshi, S.; Dhodapkar, R. Advances in Fabrication of Molecularly Imprinted Electrochemical Sensors for Detection of Contaminants and Toxicants. Environ. Res. 2022, 212, 113359. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Su, H.J.; Tan, T.W. Synthesis of Ion-Imprinted Chitosan-TiO2 Adsorbent and Its Multi-Functional Performances. Biochem. Eng. J. 2008, 38, 212–218. [Google Scholar] [CrossRef]
- Niu, J.; Liu, Z.H.; Fu, L.; Shi, F.; Ma, H.W.; Ozaki, Y.; Zhang, X. Surface-Imprinted Nanostructured Layer-by-Layer Film for Molecular Recognition of Theophylline Derivatives. Langmuir 2008, 24, 11988–11994. [Google Scholar] [CrossRef]
- Maduraiveerana, G.; Sasidharana, M.; Ganesan, V. Electrochemical Sensor and Biosensor Platforms Based on Advanced Nanomaterials for Biological and Biomedical Applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef]
- Pompeu Prado Moreira, L.F.; Buffon, E.; Stradiotto, N.R. Electrochemical Sensor Based on Reduced Graphene Oxide and Molecularly Imprinted Poly(Phenol) for D-Xylose Determination. Talanta 2020, 208, 120379. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Graphene Based Sensors and Biosensors. Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Dong, C.; Qi, J.; Han, X. A Graphene Oxide-Based Molecularly Imprinted Polymer Platform for Detecting Endocrine Disrupting Chemicals. Carbon 2010, 48, 3427–3433. [Google Scholar] [CrossRef]
- Martínez, I.V.; Ek, J.I.; Ahn, E.C.; Sustaita, A.O. Molecularly Imprinted Polymers via Reversible Addition-Fragmentation Chain-Transfer Synthesis in Sensing and Environmental Applications. RSC Adv. 2022, 12, 9186–9201. [Google Scholar] [CrossRef]
- Jiang, X.; Deng, Y.; Liu, W.B.; Li, Y.J.; Huang, X.Y. Preparation of Graphene/Poly(2-Acryloxyethyl Ferrocenecarboxylate) Nanocomposite via a “Grafting-onto” Strategy. Polym. Chem. 2018, 9, 184–192. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, G.L.; Huang, X.Y.; Li, Y.; Cao, F.Q.; Chen, H.; Liu, W.B. Thermo-Responsive Graphene Oxide/Poly(Ethyl Ethylene Phosphate) Nanocomposite via Ring Opening Polymerization. Nanomaterials 2019, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Fayazi, M.; Taher, M.A.; Afzali, D.; Mostafavi, A. Preparation of Molecularly Imprinted Polymer Coated Magnetic Multi-Walled Carbon Nanotubes for Selective Removal of Dibenzothiophene. Mater. Sci. Semicond. Process. 2015, 40, 501–507. [Google Scholar] [CrossRef]
- Pan, J.; Yao, H.; Guan, W.; Ou, H.; Huo, P.; Wang, X.; Zou, X.; Li, C. Selective Adsorption of 2,6-Dichlorophenol by Surface Imprinted Polymers Using Polyaniline/Silica Gel Composites as Functional Support: Equilibrium, Kinetics, Thermodynamics Modeling. Chem. Eng. J. 2011, 172, 847–855. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, L.; Li, B. Magnetic Molecular Imprinting Polymers Based on Three-Dimensional (3D) Graphene-Carbon Nanotube Hybrid Composites for Analysis of Melamine in Milk Powder. Food Chem. 2018, 255, 226–234. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Liu, Y.; Zhang, C.; Zhou, Y. Magnetic-Graphene Based Molecularly Imprinted Polymer Nanocomposite for the Recognition of Bovine Hemoglobin. Talanta 2015, 144, 411–419. [Google Scholar] [CrossRef]
- An, F.Q.; Gao, B.J. Adsorption Characteristics of Cr(III) Ionic Imprinting Polyamine on Silica Gel Surface. Desalination 2009, 249, 1390–1396. [Google Scholar] [CrossRef]
- Wu, Q.; Li, M.; Huang, Z.; Shao, Y.; Bai, L.; Zhou, L. Well-Defined Nanostructured Core-Shell Magnetic Surface Imprinted Polymers (Fe3O4@SiO2@MIPs) for Effective Extraction of Trace Tetrabromobisphenol A from Water. J. Ind. Eng. Chem. 2018, 60, 268–278. [Google Scholar] [CrossRef]
- Mckay, G.; Blair, H.S.; Gardner, J.R. Adsorption of Dyes on Chitin-1: Equilibrium Studies. J. Appl. Polym. Sci. 1982, 27, 3043–3057. [Google Scholar] [CrossRef]
- Deng, P.; Xu, Z.; Kuang, Y. Electrochemical Determination of Bisphenol A in Plastic Bottled Drinking Water and Canned Beverages Using A Molecularly Imprinted Chitosan-Graphene Composite Film Modified Electrode. Food Chem. 2014, 157, 490–497. [Google Scholar] [CrossRef]
Samples | Qe,exp (mg g−1) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
k1 | Qe (mg g−1) | R2 | k2 | Qe (mg g−1) | R2 | ||
GO-MIPs | 22.36 | 0.0285 | 18.690 | 0.9393 | 0.00159 | 26.455 | 0.9927 |
GO-NIPs | 7.39 | 0.0261 | 4.759 | 0.9805 | 0.00789 | 8.157 | 0.9934 |
Samples | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qm (mg g−1) | KL (L mg−1) | R2 | KF | n | R2 | |
GO-MIPs | 28.27 | 0.07989 | 0.9772 | 3.5323 | 2.0306 | 0.9842 |
GO-NIPs | 11.02 | 0.03797 | 0.9768 | 0.6024 | 1.5356 | 0.9489 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Wu, F.; Huang, X.; He, S.; Han, Q.; Zhang, Z.; Liu, W. Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances. Nanomaterials 2023, 13, 751. https://doi.org/10.3390/nano13040751
Jiang X, Wu F, Huang X, He S, Han Q, Zhang Z, Liu W. Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances. Nanomaterials. 2023; 13(4):751. https://doi.org/10.3390/nano13040751
Chicago/Turabian StyleJiang, Xue, Fangsheng Wu, Xiaoyu Huang, Shan He, Qiaoying Han, Zihua Zhang, and Wenbin Liu. 2023. "Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances" Nanomaterials 13, no. 4: 751. https://doi.org/10.3390/nano13040751
APA StyleJiang, X., Wu, F., Huang, X., He, S., Han, Q., Zhang, Z., & Liu, W. (2023). Fabrication of a Molecularly-Imprinted-Polymer-Based Graphene Oxide Nanocomposite for Electrochemical Sensing of New Psychoactive Substances. Nanomaterials, 13(4), 751. https://doi.org/10.3390/nano13040751