Nanomaterials and Devices for Harvesting Ambient Electromagnetic Waves
Abstract
:1. Introduction
2. Rectennas for Microwave, Millimeter-Wave, and Solar Cell-Like Harvesters
2.1. Rectennas Based on Schottky and MIM Diodes
2.2. Rectennas Based on 2D Materials
2.3. Rectennas for THz Frequencies Using Nanomaterials
3. Perspective and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, P.; Sinha, N.K.; Tiwari, S.; Khare, A. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 2020, 198, 665–688. [Google Scholar] [CrossRef]
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; del Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; et al. Solar photovoltaics is ready to power a sustainable future. Joule 2021, 5, 1041–1056. [Google Scholar] [CrossRef]
- Costanzo, A.; Dionigi, M.; Masotti, D.; Mongiardo, M.; Monti, G.; Tarricone, L.; Sorrentino, R. Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach. Proc. IEEE 2014, 102, 1692–1711. [Google Scholar] [CrossRef]
- Kanaujia, B.K.; Singh, N.; Kumar, S. Rectenna: Wireless Energy Harvesting System, 1st ed.; Springer: Singapore, 2021. [Google Scholar]
- Gu, X.; Hemour, S.; Wu, K. Far-Field Wireless Power Harvesting: Nonlinear Modeling, Rectenna Design, and Emerging Applications. Proc. IEEE 2022, 110, 56–73. [Google Scholar] [CrossRef]
- Saeed, M.; Palacios, P.; Wei, M.-D.; Baskent, E.; Fan, C.-Y.; Uzlu, B.; Wang, K.-T.; Hemmetter, A.; Wang, Z.; Neumaier, D.; et al. Graphene-Based Microwave Circuits: A Review. Adv. Mater. 2022, 34, 2108473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Grajal, J.; Vazquez-Roy, J.L.; Radhakrishna, U.; Wang, X.; Chern, W.; Zhou, L.; Lin, Y.; Shen, P.-C.; Ji, X.; et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 2019, 566, 368–372. [Google Scholar] [CrossRef]
- Mitrovic, I.Z.; Almalki, S.; Tekin, S.B.; Sedghi, N.; Chalker, P.R.; Hall, S. Oxides for Rectenna Technology. Materials 2021, 14, 5218. [Google Scholar] [CrossRef] [PubMed]
- Dragoman, M.; Modreanu, M.; Povey, I.M.; Aldrigo, M.; Dinescu, A.; Dragoman, D. Electromagnetic energy harvesting based on HfZrO tunneling junctions. Nanotechnology 2018, 29, 445203. [Google Scholar] [CrossRef]
- Li, D.; Gong, Y.; Chen, Y.; Lin, J.; Khan, Q.; Zhang, Y.; Li, Y.; Zhang, H.; Xie, H. Recent Progress of Two-Dimensional Thermoelectric Materials. Nanomicro Lett. 2020, 12, 36. [Google Scholar] [CrossRef]
- Velarde, G.; Pandya, S.; Karthik, J.; Pesquera, D.; Martin, L.W. Pyroelectric thin films—Past, present, and future. APL Mater. 2021, 9, 010702. [Google Scholar] [CrossRef]
- Sebald, G.; Guyomar, D.; Agbossou, A. On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 2009, 18, 125006. [Google Scholar] [CrossRef]
- Hoffmann, M.; Schroeder, U.; Künneth, C.; Kersch, A.; Starschich, S.; Böttger, U.; Mikolajick, T. Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 2015, 18, 154–164. [Google Scholar] [CrossRef]
- Ali, F.; Zhou, D.; Ali, M.; Ali, H.W.; Daaim, M.; Khan, S.; Hussain, M.M.; Sun, N. Recent progress on energy-related applications of HfO2–based ferroelectric and antiferroelectric materials. ACS Appl. Electron. Mater. 2020, 2, 2301–2317. [Google Scholar] [CrossRef]
- Moddel, G.; Grover, S. Rectenna Solar Cells, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Donchev, E.; Pang, J.S.; Gammon, P.M.; Centeno, A.; Xie, F.; Petrov, P.K.; Breeze, J.D.; Ryan, M.P.; Riley, D.J.; McN, N. The rectenna device: From theory to practice (a review). MRS Energy Sustain. 2014, 1, 1. [Google Scholar] [CrossRef]
- Jou, A.Y.-S.; Azadegan, R.; Mohammadi, S. High-Resistivity CMOS SOI Rectenna for Implantable Applications. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 854–856. [Google Scholar] [CrossRef]
- Shaulov, E.; Jameson, S.; Socher, E. W-band energy harvesting rectenna array in 65-nm CMOS. In Proceedings of the IEEE MTT-Symposium, Honolulu, HI, USA, 4–9 June 2017. [Google Scholar]
- Mohd Mokhar, M.B.; Kasjoo, S.R.; Juhari, N.J.; Zakaria, N.F. An overview of semiconductor rectifier operating in the millimeter wave and terahertz region. AIP Conf. Proc. 2020, 2203, 020039. [Google Scholar]
- Hussin, R.; Chen, Y.; Luo, Y. Thin-Film Single-Crystal Schottky Diodes for IR Detection and Beyond. IEEE Trans. Electron Devices 2016, 63, 3971–3976. [Google Scholar] [CrossRef]
- Oishi, T.; Kawano, N.; Masuya, S.; Kasu, M. Diamond Schottky Barrier Diodes With NO2 Exposed Surface and RF-DC Conversion Toward High Power Rectenna. IEEE Electron Device Lett. 2017, 38, 87–90. [Google Scholar] [CrossRef]
- Dragoman, M.; Aldrigo, M. Graphene rectenna for efficient energy harvesting at terahertz frequencies. Appl. Phys. Lett. 2016, 109, 113105. [Google Scholar] [CrossRef]
- Palazzi, V.; Hester, J.; Bito, J.; Alimenti, F.; Kalialakis, C.; Collado, A.; Mezzanotte, P.; Georgiadis, A.; Roselli, L.; Tentzeris, M.M. A Novel Ultra-Lightweight Multiband Rectenna on Paper for RF Energy Harvesting in the Next Generation LTE Bands. IEEE Trans. Microw. Theory Technol. 2018, 66, 369–379. [Google Scholar] [CrossRef]
- Fantuzzi, M.; Masotti, D.; Costanzo, A. A Novel Integrated UWB–UHF One-Port Antenna for Localization and Energy Harvesting. IEEE Trans. Antennas Propag. 2015, 63, 3839–3848. [Google Scholar] [CrossRef]
- Lemey, S.; Declercq, F.; Rogier, H. Textile Antennas as Hybrid Energy-Harvesting Platforms. Proc. IEEE 2014, 102, 1833–1857. [Google Scholar] [CrossRef]
- Hawkes, A.M.; Katko, A.R.; Cummer, S.A. A microwave metamaterial with integrated power harvesting functionality. Appl. Phys. Lett. 2013, 103, 163901. [Google Scholar] [CrossRef]
- Hemmetter, A.; Yang, X.; Wang, Z.; Otto, M.; Uzlu, B.; Andree, M.; Pfeiffer, U.; Vorobiev, A.; Stake, J.; Lemme, M.C.; et al. Terahertz Rectennas on Flexible Substrates Based on One-Dimensional Metal–Insulator–Graphene Diodes. ACS Appl. Electron. Mater. 2021, 3, 3747–3753. [Google Scholar] [CrossRef]
- Byrnes, S.J.; Blanchard, R.; Capasso, F. Harvesting renewable energy from Earth’s mid-infrared emissions. Appl. Phys. Sci. 2014, 111, 3927–3932. [Google Scholar] [CrossRef]
- Aldrigo, M.; Dragoman, M.; Modreanu, M.; Povey, I.; Iordanescu, S.; Romanitan, C.; Vasilache, D.; Dinescu, A.; Masotti, D.; Shanawani, M. Harvesting Electromagnetic Energy in the V-Band Using a Rectenna Formed by a Bow Tie Integrated With a 6-nm-Thick Au/HfO2/Pt Metal–Insulator–Metal Diode. IEEE Trans. Electron Devices 2018, 65, 2973–2980. [Google Scholar] [CrossRef]
- Citroni, R.; Di Paolo, F.; Livreri, P. Progress in THz Rectifier Technology: Research and Perspectives. Nanomaterials 2022, 12, 2479. [Google Scholar] [CrossRef]
- Dragoman, M.; Dragoman, D. 2D Nanoelectronics—Physics and Devices of Atomically Thin Materials, 1st ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Dragoman, M.; Neculoiu, D.; Cismaru, A.; Deligeorgis, G.; Konstantinidis, G.; Dragoman, D. Graphene radio: Detecting radiowaves with a single atom sheet. Appl. Phys. Lett. 2013, 101, 033109. [Google Scholar] [CrossRef]
- Song, A.M.; Missous, M.; Omling, P.; Peaker, A.R.; Samuelson, L.; Seifert, W. Unidirectional electron flow in a nanometer-scale semiconductor channel: A self-switching device. Appl. Phys. Lett. 2003, 83, 1881. [Google Scholar] [CrossRef]
- Sangaré, P.; Ducournau, G.; Grimbert, B.; Brandli, V.; Faucher, M.; Gaquière, C.; Íñiguez-de-la-Torre, A.; Íñiguez-de-la-Torre, I.; Millithaler, J.F.; Mateos, J.; et al. Experimental demonstration of direct terahertz detection at room-temperature in AlGaN/GaN asymmetric nanochannels. J. Appl. Phys. 2013, 113, 034305. [Google Scholar] [CrossRef]
- Åberg, M.; Saijets, J.; Song, A.; Prunnila, M. Simulation and Modeling of Self-switching Devices. Phys. Scr. 2004, T114, 123–126. [Google Scholar] [CrossRef]
- Westlund, A.; Winters, M.; Ivanov, I.G.; Hassan, J.; Nilsson, P.-Å.; Janzén, E.; Rorsman, N.; Grahn, J. Graphene self-switching diodes as zero-bias microwave detectors. Appl. Phys. Lett. 2015, 106, 093116. [Google Scholar] [CrossRef]
- Winters, M.; Thorsell, M.; Strupiński, W.; Rorsman, N. High frequency electromagnetic detection by nonlinear conduction modulation in graphene nanowire diodes. Appl. Phys. Lett. 2015, 107, 143508. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Kumar, R.; Sharma, M.; Kuanr, B.K. Reduced graphene Oxide/ZnO nanostructures based rectifier diode. AIP Conf. Proc. 2017, 1832, 050060. [Google Scholar]
- Balocco, C.; Song, A.M.; Åberg, M.; Forchel, A.; González, T.; Mateos, J.; Maximov, I.; Missous, M.; Rezazadeh, A.A.; Saijets, J.; et al. Microwave Detection at 110 GHz by Nanowires with Broken Symmetry. Nano Lett. 2005, 5, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Westlund, A.; Sangaré, P.; Ducournau, G.; Nilsson, P.-Å.; Gaquière, C.; Desplanque, L.; Wallart, X.; Grahn, J. Terahertz detection in zero-bias InAs self-switching diodes at room temperature. Appl. Phys. Lett. 2013, 103, 133504. [Google Scholar] [CrossRef]
- Yasir, M.; Aldrigo, M.; Dragoman, M.; Dinescu, A.; Bozzi, M.; Iordanescu, S.; Vasilache, D. Integration of Antenna Array and Self-Switching Graphene Diode for Detection at 28 GHz. IEEE Electron Device Lett. 2019, 40, 628–631. [Google Scholar] [CrossRef]
- Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct. 2019, 128, 274–297. [Google Scholar] [CrossRef]
- Dragoman, M.; Aldrigo, M.; Connolly, J.; Povey, I.M.; Iordanescu, S.; Dinescu, A.; Vasilache, D.; Modreanu, M. MoS2 radio: Detecting radio waves with a two-dimensional transition metal dichalcogenide semiconductor. Nanotechnology 2020, 31, 06LT01. [Google Scholar] [CrossRef]
- Hanson, S.; Seok, M.; Lin, Y.-S.; Foo, Z.; Kim, D.; Lee, Y.; Liu, N.; Sylvester, D.; Blaauw, D. A Low-Voltage Processor for Sensing Applications With Picowatt Standby Mode. IEEE J. Solid-State Circuits 2009, 44, 1145–1155. [Google Scholar] [CrossRef]
- Reato, E.; Palacios, P.; Uzlu, B.; Saeed, M.; Grundmann, A.; Wang, Z.; Schneider, D.S.; Wang, Z.; Heuken, M.; Kalisch, H.; et al. Zero-Bias Power-Detector Circuits based on MoS2 Field-Effect Transistors on Wafer-Scale Flexible Substrates. Adv. Mater. 2022, 34, 2108469. [Google Scholar] [CrossRef] [PubMed]
- Dragoman, M.; Aldrigo, M.; Dragoman, D.; Iordanescu, S.; Dinescu, A.; Vulpe, S.; Modreanu, M. Ferroelectrics at the nanoscale: Materials and devices—A critical review. Crit. Rev. Solid State Mater. Sci. 2022. [Google Scholar] [CrossRef]
- Garcia, V.; Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 2014, 5, 4289. [Google Scholar]
- Surender, D.; Halimi, M.A.; Khan, T.; Talukdar, F.A.; Nasimuddin; Rengarajan, S.R. 5G/Millimeter-Wave Rectenna Systems for Radio-Frequency Energy Harvesting/Wireless Power Transmission Applications: An overview. IEEE Antennas Propag. Mag. 2022. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Millimeter-Wave Power Harvesting: A Review. IEEE Open J. Antennas Propag. 2020, 1, 560–578. [Google Scholar] [CrossRef]
- Khan, T.A.; Alkhateeb, A.; Heath, R.W. Millimeter Wave Energy Harvesting. IEEE Trans. Wirel. Commun. 2016, 15, 6048–6062. [Google Scholar]
- Li, L.; Zhang, X.; Song, C.; Huan, Y. Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting. Appl. Phys. Lett. 2020, 116, 060501. [Google Scholar] [CrossRef]
- Suh, Y.-H.; Chang, K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory Techn. 2002, 50, 1784–1789. [Google Scholar] [CrossRef]
- Davids, P.S.; Jarecki, R.L.; Starbuck, A.; Burckel, D.B.; Kadlec, E.A.; Ribaudo, T.; Shaner, E.A.; Peters, D.W. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode. Nat. Nanotechnol. 2015, 10, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, I.; Singh, G. Terahertz Antenna Technology for Imaging and Sensing Applications, 1st ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Biagioni, P.; Huang, J.-S.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75, 024402. [Google Scholar] [CrossRef] [PubMed]
- Agio, M.; Alù, A. Optical Antennas, 1st ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Reynaud, C.A.; Duché, D.; Simon, J.-J.; Sanchez-Adaime, E.; Margeat, O.; Ackermann, J.; Jangid, V.; Lebouin, C.; Brunel, D.; Dumur, F.; et al. Rectifying antennas for energy harvesting from the microwaves to visible light: A review. Prog. Quantum. Electron. 2020, 72, 100265. [Google Scholar] [CrossRef]
- Fumeaux, C.; Herrmann, W.; Kneubühl, F.K.; Rothuizen, H. Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation. Infrared Phys. Technol. 1998, 39, 123–183. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, V.; Bougher, T.L.; Cola, B.A. A carbon nanotube optical rectenna. Nat. Nanotechnol. 2015, 10, 1027–1032. [Google Scholar] [CrossRef]
- Dragoman, M.; Aldrigo, M.; Dinescu, A.; Dragoman, D.; Costanzo, A. Towards a terahertz direct receiver based on graphene up to 10 THz. J. Appl. Phys. 2014, 115, 044307. [Google Scholar] [CrossRef]
- Zhu, Z.; Joshi, S.; Grover, S.; Moddel, G. Graphene geometric diodes for terahertz rectennas. J. Phys. D Appl. Phys. 2013, 46, 185101. [Google Scholar] [CrossRef]
- Dragoman, D.; Dragoman, M. Geometrically induced rectification in two-dimensional ballistic nanodevices. J. Phys. D Appl. Phys. 2013, 46, 055306. [Google Scholar] [CrossRef]
- Tongay, S.; Lemaitre, M.; Miao, X.; Gila, B.; Appleton, B.R.; Hebard, A.F. Rectification at Graphene-Semiconductor Interfaces: Zero-Gap Semiconductor-Based Diodes. Phys. Rev. X 2012, 2, 011002. [Google Scholar] [CrossRef]
- Yim, C.; McEvoy, N.; Duesberg, G.S. Characterization of graphene-silicon Schottky barrier diodes using impedance spectroscopy. Appl. Phys. Lett. 2014, 103, 193106. [Google Scholar] [CrossRef]
- Chen, C.-C.; Aykol, M.; Chang, C.-C.; Levi, A.F.J.; Cronin, S.B. Graphene-Silicon Schottky Diodes. Nano Lett. 2011, 11, 1863–1867. [Google Scholar] [CrossRef]
- Mauapi, A. Radiofrequency energy harvesting systems for Internet of Things applications: A comprehensive overview of design issues. Sensors 2022, 22, 8088. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Duan, J.; Jing, H.; Yang, H.; Deng, H.; Song, C.; Wang, J.; Qu, Z.; Zhang, B. Scalable, dual-band metasurface array for electromagnetic energy harvesting and wireless power transfer. Micromachines 2022, 13, 1712. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, X.; Zhang, L.; Ziqi, M.; Zhong, H.; You, R.; Lu, W.; You, Z.; Zhao, J. WiFi energy-harvesting antennaiInspired by the resonant magnetic dipole metamaterial. Sensors 2022, 22, 6523. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.H.; Singh, M.J.; Al-Bawri, S.S.; Ibrahim, S.K.; Islam, M.T.; Alzamil, A.; Islam, M.S. Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications. Sensors 2022, 22, 4144. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value at Room Temperature | Applications |
---|---|---|
Mean free path | 400 nm if the graphene is transferred on SiO2; higher than 1 μm or greater for graphene transferred on h-BN | Ballistic devices: harvesting microwaves, millimeter waves, and THz and IR energy |
Mobility |
| Transistors, high-frequency applications |
Thermal conductivity | 5000 W/m∙K, higher than in many metals | Thermal harvesting |
Young’s modulus | 1.5 TPa, 10× times greater than in steel | Stiff materials |
Material | Method | Yield | Graphene Surface |
---|---|---|---|
Graphite | Repetitive peeling HOPG | Low | Small |
SiC | Desorption of Si atoms at high temperature | Moderate | Moderate (3–4 inch wafers) |
GO | GO dispersion into hydrazine | High | Large |
CVD | Gas mixture (CH4 and H2) | Very high | Very large (30 inches) |
Material | Method | Yield |
---|---|---|
RF, microwaves, millimeter waves | 100 μm–30 cm | 2 μW/m2–10 mW/m2 |
Infrared thermal radiation | 8–13 μm | 0.1–1 mW/cm2 |
Sun | 0.15—4 μm | 5–100 mW/cm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragoman, M.; Aldrigo, M.; Dinescu, A.; Vasilache, D.; Iordanescu, S.; Dragoman, D. Nanomaterials and Devices for Harvesting Ambient Electromagnetic Waves. Nanomaterials 2023, 13, 595. https://doi.org/10.3390/nano13030595
Dragoman M, Aldrigo M, Dinescu A, Vasilache D, Iordanescu S, Dragoman D. Nanomaterials and Devices for Harvesting Ambient Electromagnetic Waves. Nanomaterials. 2023; 13(3):595. https://doi.org/10.3390/nano13030595
Chicago/Turabian StyleDragoman, Mircea, Martino Aldrigo, Adrian Dinescu, Dan Vasilache, Sergiu Iordanescu, and Daniela Dragoman. 2023. "Nanomaterials and Devices for Harvesting Ambient Electromagnetic Waves" Nanomaterials 13, no. 3: 595. https://doi.org/10.3390/nano13030595