Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Composite Films
2.3. Physical and Chemical Characterization
2.4. Biological Characterization
2.5. Statistical Analysis
3. Results and Discussion
3.1. Opacity and Morphology
3.2. Chemical Interaction
3.3. Crystallinity
3.4. Mechanical Properties
3.5. Thermal Property
3.6. Degradation in Soil
3.7. Toluene Uptake and Water Absorption Capacity
3.8. Antibacterial Activity
3.9. Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Morreale, M. Green composites: A brief review. Compos. A Appl. Sci. Manuf. 2011, 42, 579–588. [Google Scholar] [CrossRef]
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferronato, N.; Torretta, V. Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [Green Version]
- Cherian, S.; Ryu, S.B.; Cornish, K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol. J. 2019, 17, 2041–2061. [Google Scholar] [CrossRef] [Green Version]
- Mariano, M.; El Kissi, N.; Dufresne, A. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohydr. Polym. 2016, 137, 174–183. [Google Scholar] [CrossRef]
- Rajisha, K.R.; Maria, H.J.; Pothan, L.A.; Ahmad, Z.; Thomas, S. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int. J. Biol. Macromol. 2014, 67, 147–153. [Google Scholar] [CrossRef]
- Zhang, N.; Cao, H. Enhancement of the Antibacterial Activity of Natural Rubber Latex Foam by Blending It with Chitin. Materials 2020, 13, 1039. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Katare, S.; Patkar, P.; Caruthers, J.M.; Venkatasubramanian, V.; Walker, K.A. Sulfur Vulcanization of Natural Rubber for Benzothiazole Accelerated Formulations: From Reaction Mechanisms to a Rational Kinetic Model. Rubber Chem. Technol. 2003, 76, 592–693. [Google Scholar] [CrossRef] [Green Version]
- Grasland, F.; Chazeau, L.; Chenal, J.-M.; Schach, R. About thermo-oxidative ageing at moderate temperature of conventionally vulcanized natural rubber. Polym. Degrad. Stab. 2019, 161, 74–84. [Google Scholar] [CrossRef]
- Supanakorn, G.; Varatkowpairote, N.; Taokaew, S.; Phisalaphong, M. Alginate as Dispersing Agent for Compounding Natural Rubber with High Loading Microfibrillated Cellulose. Polymers 2021, 13, 468. [Google Scholar] [CrossRef]
- Supanakorn, G.; Taokaew, S.; Phisalaphong, M. Ternary composite films of natural rubber, cellulose microfiber, and carbox-ymethyl cellulose for excellent mechanical properties, biodegradability and chemical resistance. Cellulose 2021, 28, 1–14. [Google Scholar] [CrossRef]
- Taokaew, S.; Phisalaphong, M.; Newby, B.M.Z. Bacterial cellulose: Biosyntheses, modifications, and applications. In Applied Environmental Materials Science for Sustainability; IGI Global: Hershey, PA, USA, 2016; pp. 255–283. [Google Scholar]
- Heinze, T.; Koschella, A. Carboxymethyl Ethers of Cellulose and Starch—A Review. Macromol. Symp. 2005, 223, 13–40. [Google Scholar] [CrossRef]
- Huang, H.; He, P.; Hu, N.; Zeng, Y. Electrochemical and electrocatalytic properties of myoglobin and hemoglobin incorporated in carboxymethyl cellulose films. Bioelectrochemistry 2003, 61, 29–38. [Google Scholar] [CrossRef]
- Phomrak, S.; Phisalaphong, M. Reinforcement of Natural Rubber with Bacterial Cellulose via a Latex Aqueous Microdispersion Process. J. Nanomater. 2017, 2017, 4739793. [Google Scholar] [CrossRef] [Green Version]
- Pedroza-Toscano, M.A.; López-Cuenca, S.; Rabelero-Velasco, M.; Moreno-Medrano, E.D.; Mendizabal-Ruiz, A.P.; Salazar-Peña, R. Silver Nanoparticles Obtained by Semicontinuous Chemical Reduction Using Carboxymethyl Cellulose as a Stabilizing Agent and Its Antibacterial Capacity. J. Nanomater. 2017, 2017, 1390180. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Periyasami, G.; Aldalbahi, A.; Fogliano, V. The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behavior. Food Chem. 2021, 359, 129859. [Google Scholar] [CrossRef]
- Rozilah, A.; Aiza Jaafar, C.N.; Sapuan, S.M.; Zainol, I.; Ilyas, R.A. The effects of silver nanoparticles compositions on the mechanical, physiochemical, antibacterial, and morphology properties of sugar palm starch biocomposites for antibacterial coating. Polymers 2020, 12, 2605. [Google Scholar] [CrossRef]
- Gupta, I.; Kumar, A.; Bhatt, A.N.; Sapra, S.; Gandhi, S. Green synthesis-mediated silver nanoparticles based biocomposite films for wound healing application. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2994–3011. [Google Scholar] [CrossRef]
- Suttasattakrit, K.; Khamkeaw, A.; Tangwongsan, C.; Pavasant, P.; Phisalaphong, M. Ionic Silver and Electrical Treatment for Susceptibility and Disinfection of Escherichia coli Biofilm-Contaminated Titanium Surface. Molecules 2022, 27, 180. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Simbine, E.O.; Rodrigues, L.D.C.; Lapa-Guimarães, J.; Kamimura, E.S.; Corassin, C.H.; de Oliveira, C.A.F. Application of silver nanoparticles in food packages: A review. Food Sci. Technol. 2019, 39, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Haider, A.; Kang, L.K. Preparation of silver nanoparticles and their industrial and biomedical applications: A comprehensive review. Adv. Mater. Sci. Eng. 2015, 2015, 165257. [Google Scholar] [CrossRef] [Green Version]
- Alshareef, A.; Laird, K.; Cross, R.B.M. Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium. Appl. Surf. Sci. 2017, 424, 310–315. [Google Scholar] [CrossRef]
- Hu, M.; Zhong, K.; Liang, Y.; Ehrman, S.H.; Mi, B. Effects of Particle Morphology on the Antibiofouling Performance of Silver Embedded Polysulfone Membranes and Rate of Silver Leaching. Ind. Eng. Chem. Res. 2017, 56, 2240–2246. [Google Scholar] [CrossRef]
- American Association of Textile Chemists and Colorists. AATCC Test Method 100-2004; AATCC: Research Triangle Park, NC, USA, 2004; pp. 142–144. [Google Scholar]
- Singh, H.; Du, J.; Singh, P.; Yi, T.H. Extracellular synthesis of silver nanoparticles by Pseudomonas sp. THG-LS1.4 and their antimicrobial application. J. Pharm. Anal. 2018, 8, 258–264. [Google Scholar] [CrossRef]
- Fatma, A.; Ghorbel, N.; Bresson, S.; Abbas, O.; Kallel, A. Study of nanocomposites based on cellulose nanoparticles and natural rubber latex by ATR/FTIR spectroscopy: The impact of reinforcement: The impact of reinforcement. Polym. Compos. 2018, 40, 2076–2087. [Google Scholar]
- Stelescu, M.-D.; Manaila, E.; Craciun, G.; Chirila, C. Development and Characterization of Polymer Eco-Composites Based on Natural Rubber Reinforced with Natural Fibers. Materials 2017, 10, 787. [Google Scholar] [CrossRef]
- Nawamawat, K.; Sakdapipanich, J.T.; Ho, C.C.; Ma, Y.; Song, J.; Vancso, J.G. Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 390, 157–166. [Google Scholar] [CrossRef]
- Flauzino Neto, W.P.; Mariano, M.; da Silva, I.S.V.; Silvério, H.A.; Putaux, J.-L.; Otaguro, H.; Pasquini, D.; Dufresne, A. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr. Polym. 2016, 153, 143–152. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.-B.; Zuo, Y.; Lv, G.-Y.; Mu, Y.-H.; Li, H. Morphology, hydrogen-bonding and crystallinity of nano-hydroxyapatite/polyamide 66 biocomposites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 843–848. [Google Scholar] [CrossRef]
- Lee, W.-F.; Tsao, K.-T. Effect of silver nanoparticles content on the various properties of nanocomposite hydrogels by in situ polymerization. J. Mater. Sci. 2010, 45, 89–97. [Google Scholar] [CrossRef]
- Barud, H.S.; Regiani, T.; Marques, R.F.C.; Lustri, W.R.; Messaddeq, Y.; Ribeiro, S.J.L. Antimicrobial Bacterial Cellulose-Silver Na-noparticles Composite Membranes. J. Nanomater. 2011, 2011, 721631. [Google Scholar] [CrossRef] [Green Version]
- Taokaew, S.; Chiaoprakobkij, N.; Siripong, P.; Sanchavanakit, N.; Pavasant, P.; Phisalaphong, M. Multifunctional cellulosic nanofiber film with enhanced antimicrobial and anticancer properties by incorporation of ethanolic extract of Garcinia mangostana peel. Mater. Sci. Eng. C 2021, 120, 111783. [Google Scholar] [CrossRef]
- Regiel-Futyra, A.; Kus-Liśkiewicz, M.M.; Sebastian, V.; Irusta, S.; Arruebo, M.; Kyzioł, A.; Stochel, G. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes. RSC Adv. 2017, 7, 52398–52413. [Google Scholar] [CrossRef] [PubMed]
Samples | NR (g) | CF (g) | SCMC (g) | Ag50 (mg) | Ag100 (mg) |
---|---|---|---|---|---|
NC | 0.8 | 1.2 | 1.0 | - | - |
NCAg50-1 | 0.8 | 1.2 | 1.0 | 1.0 | - |
NCAg50-2 | 0.8 | 1.2 | 1.0 | 2.0 | - |
NCAg50-3 | 0.8 | 1.2 | 1.0 | 3.0 | |
NCAg100-1 | 0.8 | 1.2 | 1.0 | - | 1.0 |
NCAg100-2 | 0.8 | 1.2 | 1.0 | - | 2.0 |
NCAg100-3 | 0.8 | 1.2 | 1.0 | - | 3.0 |
Samples | AgNPs (% w/w) | Crystallinity (%) | Td (°C) | Tg (°C) | WAC (%) (After 7 Days) | |
---|---|---|---|---|---|---|
1st Weight Loss | 2nd Weight Loss | |||||
NC | 0.000 | 72.0 | 314.8 | 378.9 | −64.3 | 279.1 ± 27.1 |
NCAg50-1 | 0.033 | 64.8 | 318.7 | 380.8 | −66.6 | 188.8 ± 29.2 |
NCAg50-2 | 0.066 | 64.9 | 316.9 | 382.0 | −67.0 | 239.9 ± 48.6 |
NCAg50-3 | 0.100 | 69.1 | 317.6 | 381.8 | −66.4 | 180.6 ± 37.3 |
NCAg100-1 | 0.033 | 65.6 | 316.1 | 382.3 | −66.2 | 215.3 ± 31.0 |
NCAg100-2 | 0.066 | 65.7 | 317.0 | 381.9 | −66.7 | 259.0 ± 47.0 |
NCAg100-3 | 0.100 | 69.9 | 316.7 | 382.6 | −66.1 | 218.8 ± 82.6 |
Samples | AgNPs (% w/w) | Time (h) | |||
---|---|---|---|---|---|
2 | 4 | 6 | 8 | ||
NC | 0.000 | 3.6 ± 1.7 | 13.6 ± 3.9 | 19.2 ± 3.1 | 20.0± 4.0 |
NCAg50-1 | 0.033 | 11.0 ± 3.1 | 10.2 ± 4.0 | 11.7 ±1.1 | 8.4 ± 1.7 |
NCAg50-2 | 0.066 | 9.3 ± 2.0 | 8.7 ± 1.4 | 8.9 ± 1.7 | 8.7 ± 2.5 |
NCAg50-3 | 0.100 | 5.0 ± 1.8 | 7.2 ± 2.1 | 7.3 ± 2.7 | 6.7 ± 1.0 |
NCAg100-1 | 0.033 | 8.3 ± 2.6 | 7.6 ± 3.8 | 9.6 ± 0.7 | 9.6 ± 2.3 |
NCAg100-2 | 0.066 | 8.4 ± 3.9 | 10.8 ± 5.3 | 8.6 ± 0.7 | 7.6 ± 1.5 |
NCAg100-3 | 0.100 | 9.6 ± 2.9 | 9.7 ± 2.4 | 7.9 ± 1.3 | 7.7 ± 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supanakorn, G.; Taokaew, S.; Phisalaphong, M. Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties. Nanomaterials 2023, 13, 521. https://doi.org/10.3390/nano13030521
Supanakorn G, Taokaew S, Phisalaphong M. Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties. Nanomaterials. 2023; 13(3):521. https://doi.org/10.3390/nano13030521
Chicago/Turabian StyleSupanakorn, Goragot, Siriporn Taokaew, and Muenduen Phisalaphong. 2023. "Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties" Nanomaterials 13, no. 3: 521. https://doi.org/10.3390/nano13030521
APA StyleSupanakorn, G., Taokaew, S., & Phisalaphong, M. (2023). Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties. Nanomaterials, 13(3), 521. https://doi.org/10.3390/nano13030521