Vacuum Spin LED: First Step towards Vacuum Semiconductor Spintronics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, W. Vacuum Microelectronics; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Gaertner, G. Historical Development and Future Trends of Vacuum Electronics. J. Vac. Sci. Technol. B 2012, 30, 060801. [Google Scholar] [CrossRef]
- Han, J.-W.; Moon, D.-I.; Meyyappan, M. Nanoscale Vacuum Channel Transistor. Nano Lett. 2017, 17, 2146–2151. [Google Scholar] [CrossRef]
- Litovchenko, V.; Evtukh, A. Vacuum Nanoelectronics. In Handbook of Semiconductor Nanostructures and Nanodevices; Balandin, A.A., Wang, K.L., Eds.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2006; Volume 3, pp. 153–227. ISBN 978-1-58883-073-9. [Google Scholar]
- Zhu, H.J.; Ramsteiner, M.; Kostial, H.; Wassermeier, M.; Schönherr, H.-P.; Ploog, K.H. Room-Temperature Spin Injection from Fe into GaAs. Phys. Rev. Lett. 2001, 87, 016601. [Google Scholar] [CrossRef] [Green Version]
- Van’t Erve, O.M.J.; Kioseoglou, G.; Hanbicki, A.T.; Li, C.H.; Jonker, B.T.; Mallory, R.; Yasar, M.; Petrou, A. Comparison of Fe/Schottky and Fe/Al2O3 Tunnel Barrier Contacts for Electrical Spin Injection into GaAs. Appl. Phys. Lett. 2004, 84, 4334–4336. [Google Scholar] [CrossRef]
- Nishizawa, N.; Munekata, H. Lateral-Type Spin-Photonics Devices: Development and Applications. Micromachines 2021, 12, 644. [Google Scholar] [CrossRef]
- Kimura, T.; Hashimoto, N.; Yamada, S.; Miyao, M.; Hamaya, K. Room-Temperature Generation of Giant Pure Spin Currents Using Epitaxial Co2FeSi Spin Injectors. NPG Asia Mater. 2012, 4, e9. [Google Scholar] [CrossRef]
- Safarov, V.I.; Rozhansky, I.V.; Zhou, Z.; Xu, B.; Wei, Z.; Wang, Z.-G.; Lu, Y.; Jaffrès, H.; Drouhin, H.-J. Recombination Time Mismatch and Spin Dependent Photocurrent at a Ferromagnetic-Metal—Semiconductor Tunnel Junction. Phys. Rev. Lett. 2022, 128, 057701. [Google Scholar] [CrossRef]
- Butler, W.H.; Zhang, X.-G.; Schulthess, T.C.; MacLaren, J.M. Spin-Dependent Tunneling Conductance of Fe(100)|MgO(100)|Fe(100) Sandwiches. Phys. Rev. B 2001, 63, 054416. [Google Scholar] [CrossRef] [Green Version]
- Mathon, J.; Umerski, A. Theory of Tunneling Magnetoresistance of an Epitaxial Fe/MgO/Fe(001) Junction. Phys. Rev. B 2001, 63, 220403. [Google Scholar] [CrossRef] [Green Version]
- Hirohata, A.; Takanashi, K. Future Perspectives for Spintronic Devices. J. Phys. Appl. Phys. 2014, 47, 193001. [Google Scholar] [CrossRef]
- Rodionov, A.A.; Golyashov, V.A.; Chistokhin, I.B.; Jaroshevich, A.S.; Derebezov, I.A.; Haisler, V.A.; Shamirzaev, T.S.; Marakhovka, I.I.; Kopotilov, A.V.; Kislykh, N.V.; et al. Photoemission and Injection Properties of a Vacuum Photodiode with Two Negative-Electron-Affinity Semiconductor Electrodes. Phys. Rev. Appl. 2017, 8, 034026. [Google Scholar] [CrossRef]
- Tereshchenko, O.E.; Shaibler, G.É.; Yaroshevich, A.S.; Shevelev, S.V.; Terekhov, A.S.; Lundin, V.V.; Zavarin, E.E.; Besyul’kin, A.I. Low-Temperature Method of Cleaning p-GaN(0001) Surfaces for Photoemitters with Effective Negative Electron Affinity. Phys. Solid State 2004, 46, 1949–1953. [Google Scholar] [CrossRef]
- Rusetsky, V.S.; Golyashov, V.A.; Eremeev, S.V.; Kustov, D.A.; Rusinov, I.P.; Shamirzaev, T.S.; Mironov, A.V.; Demin, A.Y.; Tereshchenko, O.E. New Spin-Polarized Electron Source Based on Alkali Antimonide Photocathode. Phys. Rev. Lett. 2022, 129, 166802. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, S.; Takagi, Y.; Niigaki, M.; Kan, H.; Kondoh, H. GaN-Based Photocathodes with Extremely High Quantum Efficiency. Appl. Phys. Lett. 2005, 86, 103511. [Google Scholar] [CrossRef]
- Seitz, P.; Theuwissen, A.J. (Eds.) Single-Photon Imaging; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2011; Volume 160, ISBN 978-3-642-18442-0. [Google Scholar]
- Garwin, E.L.; Pierce, D.T.; Siegmann, H.C. Polarized Photoelectrons from Optically Magnetized Semiconductors. In Proceedings of the Swiss Physical Society Meeting, Bern, Switzerland, 26 April 1974. [Google Scholar]
- Lampel, G.; Weisbuch, C. Proposal for an Efficient Source of Polarized Photoelectrons from Semiconductors. Solid State Commun. 1975, 16, 877–880. [Google Scholar] [CrossRef]
- Maruyama, T.; Prepost, R.; Garwin, E.L.; Sinclair, C.K.; Dunham, B.; Kalem, S. Enhanced Electron Spin Polarization in Photoemission from Thin GaAs. Appl. Phys. Lett. 1989, 55, 1686–1688. [Google Scholar] [CrossRef]
- Bae, J.K.; Cultrera, L.; DiGiacomo, P.; Bazarov, I. Rugged Spin-Polarized Electron Sources Based on Negative Electron Affinity GaAs Photocathode with Robust Cs2Te Coating. Appl. Phys. Lett. 2018, 112, 154101. [Google Scholar] [CrossRef]
- Mamaev, Y.A.; Gerchikov, L.G.; Yashin, Y.P.; Vasiliev, D.A.; Kuzmichev, V.V.; Ustinov, V.M.; Zhukov, A.E.; Mikhrin, V.S.; Vasiliev, A.P. Optimized Photocathode for Spin-Polarized Electron Sources. Appl. Phys. Lett. 2008, 93, 081114. [Google Scholar] [CrossRef]
- Golyashov, V.A.; Rusetsky, V.S.; Shamirzaev, T.S.; Dmitriev, D.V.; Kislykh, N.V.; Mironov, A.V.; Aksenov, V.V.; Tereshchenko, O.E. Spectral Detection of Spin-Polarized Ultra Low-Energy Electrons in Semiconductor Heterostructures. Ultramicroscopy 2020, 218, 113076. [Google Scholar] [CrossRef]
- Tereshchenko, O.E.; Golyashov, V.A.; Rusetsky, V.S.; Mironov, A.V.; Demin, A.Y.; Aksenov, V.V. A New Imaging Concept in Spin Polarimetry Based on the Spin-Filter Effect. J. Synchrotron Radiat. 2021, 28, 864–875. [Google Scholar] [CrossRef]
- Tereshchenko, O.E.; Chikichev, S.I.; Terekhov, A.S. Composition and Structure of HCl-Isopropanol Treated and Vacuum Annealed GaAs (100) Surfaces. J. Vac. Sci. Technol. Vac. Surf. Films 1999, 17, 2655–2662. [Google Scholar] [CrossRef]
- Tereshchenko, O.E.; Alperovich, V.L.; Zhuravlev, A.G.; Terekhov, A.S.; Paget, D. Cesium-Induced Surface Conversion: From As-Rich to Ga-Rich GaAs (001) at Reduced Temperatures. Phys. Rev. B 2005, 71, 155315. [Google Scholar] [CrossRef]
- Tereshchenko, O.E.; Golyashov, V.A.; Rodionov, A.A.; Chistokhin, I.B.; Kislykh, N.V.; Mironov, A.V.; Aksenov, V.V. Solar Energy Converters Based on Multi-Junction Photoemission Solar Cells. Sci. Rep. 2017, 7, 16154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tereshchenko, O.E.; Lamine, D.; Lampel, G.; Lassailly, Y.; Li, X.; Paget, D.; Peretti, J. Transport and Magnetic Properties of Fe/GaAs Schottky Junctions for Spin Polarimetry Applications. J. Appl. Phys. 2011, 109, 113708. [Google Scholar] [CrossRef]
- Pierce, D.T.; Meier, F. Photoemission of Spin-Polarized Electrons from GaAs. Phys. Rev. B 1976, 13, 5484. [Google Scholar] [CrossRef] [Green Version]
- Meier, F.; Zakharchenya, B.P. (Eds.) Optical Orientation; Modern Problems in Condensed Matter Sciences; Elsevier Science Pub. Co.: Amsterdam, The Netherlands; New York, NY, USA, 1984; ISBN 978-0-444-86741-4. [Google Scholar]
- Malinowski, A.; Britton, R.S.; Grevatt, T.; Harley, R.T.; Ritchie, D.A.; Simmons, M.Y. Spin Relaxation in GaAs/Alx Ga1−xAs Quantum Wells. Phys. Rev. B 2000, 62, 13034. [Google Scholar] [CrossRef]
- Ghiringhelli, G.; Larsson, K.; Brookes, N.B. High-Efficiency Spin-Resolved and Spin-Integrated Electron Detection: Parallel Mounting on a Hemispherical Analyzer. Rev. Sci. Instrum. 1999, 70, 4225–4230. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Z.; Liu, Y.; Manos, D.M.; Poelker, M.; Stutzman, M.; Tang, B.; Zhang, S.; Zou, J. Optical-Resonance-Enhanced Photoemission from Nanostructured GaAs Photocathodes. Phys. Rev. Appl. 2019, 12, 064002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tereshchenko, O.E.; Golyashov, V.A.; Rusetsky, V.S.; Kustov, D.A.; Mironov, A.V.; Demin, A.Y. Vacuum Spin LED: First Step towards Vacuum Semiconductor Spintronics. Nanomaterials 2023, 13, 422. https://doi.org/10.3390/nano13030422
Tereshchenko OE, Golyashov VA, Rusetsky VS, Kustov DA, Mironov AV, Demin AY. Vacuum Spin LED: First Step towards Vacuum Semiconductor Spintronics. Nanomaterials. 2023; 13(3):422. https://doi.org/10.3390/nano13030422
Chicago/Turabian StyleTereshchenko, Oleg E., Vladimir A. Golyashov, Vadim S. Rusetsky, Danil A. Kustov, Andrey V. Mironov, and Alexander Yu. Demin. 2023. "Vacuum Spin LED: First Step towards Vacuum Semiconductor Spintronics" Nanomaterials 13, no. 3: 422. https://doi.org/10.3390/nano13030422
APA StyleTereshchenko, O. E., Golyashov, V. A., Rusetsky, V. S., Kustov, D. A., Mironov, A. V., & Demin, A. Y. (2023). Vacuum Spin LED: First Step towards Vacuum Semiconductor Spintronics. Nanomaterials, 13(3), 422. https://doi.org/10.3390/nano13030422