Wide-Temperature Tunable Phonon Thermal Switch Based on Ferroelectric Domain Walls of Tetragonal KTN Single Crystal
Abstract
1. Introduction
2. Experimental and Theoretical Details
2.1. Crystal Growth and Thermal Conductivity Measurement
2.2. Computational Method
3. Results and Discussion
3.1. Thermal Conductivity of Tetragonal Mono- and Multi-Domain KTN
3.2. Study on Thermal Boundary Resistance and Thermal Switch of DW
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merz, W.J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 1954, 95, 690. [Google Scholar] [CrossRef]
- Vassighi, A.; Sachdev, M. Thermal runaway in integrated circuits. IEEE Trans. Device Mater. Reliab. 2006, 6, 300–305. [Google Scholar] [CrossRef]
- Li, N.; Ren, J.; Wang, L.; Zhang, G.; Hänggi, P.; Li, B. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 2012, 84, 1045. [Google Scholar] [CrossRef]
- Toberer, E.S.; Baranowski, L.L.; Dames, C. Advances in thermal conductivity. Annu. Rev. Mater. Res. 2012, 42, 179–209. [Google Scholar] [CrossRef]
- Luckyanova, M.N.; Garg, J.; Esfarjani, K.; Jandl, A.; Bulsara, M.T.; Schmidt, A.J.; Minnich, A.J.; Chen, S.; MSDresselhaus, M.S.; Chen, G. Coherent phonon heat conduction in superlattices. Science 2012, 338, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Maldovan, M.J. Phonon wave interference and thermal bandgap materials. Nat. Mater. 2015, 14, 667–674. [Google Scholar] [CrossRef]
- Lee, S.; Hippalgaonkar, K.; Yang, F.; Hong, J.; Ko, C.; Suh, J.; Liu, K.; Wang, K.; Urban, J.J.; Zhang, X. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 2017, 355, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Luan, Y.; Luo, X.; Shin, S.; Zhang, T.; Smith, P.; Gong, W.; Bockstaller, M.; Luo, T.; Chen, R. Dual-mode solid-state thermal rectification. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Luan, Y.; Shin, S.; Zhang, T.; Luo, X.; Lundh, J.S.; Gong, W.; Bockstaller, M.R.; Choi, S.; Luo, T. High-contrast and reversible polymer thermal regulator by structural phase transition. Sci. Adv. 2019, 5, eaax3777. [Google Scholar] [CrossRef] [PubMed]
- Mante, A.J.H.; Volger, J. Phonon transport in barium titanate. Physica 1971, 52, 577–604. [Google Scholar] [CrossRef]
- Weilert, M.; Msall, M.; Wolfe, J.P.; Anderson, A.C. Mode dependent scattering of phonons by domain walls in ferroelectric KDP. Z. Phys. B Condens. Matter 1993, 91, 179–188. [Google Scholar] [CrossRef]
- Weilert, M.; Msall, M.; Anderson, A.C.; Wolfe, J.P. Phonon scattering from ferroelectric domain walls: Phonon imaging in KDP. Phys. Rev. Lett. 1993, 71, 735. [Google Scholar] [CrossRef] [PubMed]
- Royo, M.; Escorihuela-Sayalero, C.; Íñiguez, J.; Rurali, R.J. Ferroelectric domain wall phonon polarizer. Phys. Rev. Mater. 2017, 1, 051402. [Google Scholar] [CrossRef]
- Seijas-Bellido, J.A.; Escorihuela-Sayalero, C.; Royo, M.; Ljungberg, M.P.; Wojdeł, J.C.; Íñiguez, J.; Rurali, R.J. A phononic switch based on ferroelectric domain walls. Phys. Rev. B 2017, 96, 140101. [Google Scholar] [CrossRef]
- Langenberg, E.; Saha, D.; Holtz, M.E.; Wang, J.J.; Bugallo, D.; Ferreiro-Vila, E.; Paik, H.; Hanke, I.; Ganschow, S.; Muller, D.A.; et al. Ferroelectric domain walls in PbTiO3 are effective regulators of heat flow at room temperature. Nano Lett. 2019, 19, 7901–7907. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, P.E.; Adamo, C.; Ye, L.; Huey, B.D.; Lee, S.R. Effects of coherent ferroelastic domain walls on the thermal conductivity and Kapitza conductance in bismuth ferrite. Appl. Phys. Lett. 2013, 102, 121903. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Yu, Y.; Zhang, H.; Boughton, R.I. Growth of cubic KTa1−xNbxO3 crystal by Czochralski method. J. Cryst. Growth 2006, 293, 398–403. [Google Scholar] [CrossRef]
- Wang, J.; Guan, Q.; Wei, J.; Wang, M.; Liu, Y.J. Growth and characterization of cubic KTa1-xNbxO3 crystals. J. Cryst. Growth 1992, 116, 27–36. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Evans, D.J. Homogeneous NEMD algorithm for thermal conductivity—Application of non-canonical linear response theory. Phys. Lett. A 1982, 91, 457–460. [Google Scholar] [CrossRef]
- Mishin, Y.; Lozovoi, A.J. Angular-dependent interatomic potential for tantalum. Acta Mater. 2006, 54, 5013–5026. [Google Scholar] [CrossRef]
- Pokatashkin, P.; Kuksin, A.; Yanilkin, A. Angular dependent potential for α-boron and large-scale molecular dynamics simulations. Model. Simul. Mater. Sci. Eng. 2015, 23, 045014. [Google Scholar] [CrossRef]
- Apostol, F.; Mishin, Y. Angular-dependent interatomic potential for the aluminum-hydrogen system. Phys. Rev. B 2010, 82, 144115. [Google Scholar] [CrossRef]
- Brommer, P.; Gähler, F. Potfit: Effective potentials from ab initio data. Model. Simul. Mater. Sci. Eng. 2007, 15, 295. [Google Scholar] [CrossRef]
- Brommer, P.; Gähler, F. Effective potentials for quasicrystals from ab-initio data. Philos. Mag. 2006, 86, 753–758. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Y.; Zhou, Z. Structures and elastic properties of paraelectric and ferroelectric KTa0. 5Nb0.5O3 from first-principles calculation. Phys. B 2011, 406, 850–853. [Google Scholar] [CrossRef]
- Yang, W.; Han, J.; Wang, L.; Yangqing, S.; Linjun, L.; Yuqiang, Y.; Haidong, L.; Liangyu, C. Effect of ordered B-site cations on the structure, elastic and thermodynamic properties of KTa0. 5Nb0. 5O3 crystal. Appl. Phys. A 2017, 123, 1–7. [Google Scholar] [CrossRef]
- Ikeshoji, T.; Hafskjold, B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol. Phys. 1994, 81, 251–261. [Google Scholar] [CrossRef]
- Jund, P.; Jullien, R.J. Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys. Rev. B 1999, 59, 13707. [Google Scholar] [CrossRef]
- Wojdeł, J.C.; Iniguez, J.J. Ferroelectric transitions at ferroelectric domain walls found from first principles. Phys. Rev. Lett. 2014, 112, 247603. [Google Scholar] [CrossRef] [PubMed]
- Schelling, P.K.; Phillpot, S.R.; Keblinski, P.J. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 2002, 65, 144306. [Google Scholar] [CrossRef]
- Sellan, D.P.; Landry, E.S.; Turney, J.; McGaughey, A.J.; Amon, C.H. Size effects in molecular dynamics thermal conductivity predictions. Phys. Rev. B 2010, 81, 214305. [Google Scholar] [CrossRef]
- Wang, X.P.; Wang, J.Y.; Zhang, H.J.; Yu, Y.G.; Wu, J.; Gao, W.L.; Boughton, R.I. Thermal properties of cubic KTa1−xNbxO3 crystals. J. Appl. Phys. 2008, 103, 033513. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Z.H.; Wang, J.Y.; Liu, Y.G.; Guan, Q.C.; Wei, J.Q. The thermal properties of KTa1-xNbxO3 crystal. Ferroelectrics 1992, 132, 55–60. [Google Scholar] [CrossRef]
- Fonseca, L.R.C.; Liu, D.; Robertson, J. p-type Fermi level pinning at a Si: Al2O3 model interface. Appl. Phys. Lett. 2008, 93, 122905. [Google Scholar] [CrossRef]
- Seijas-Bellido, J.A.; Íñiguez, J.; Rurali, R. Anisotropy-driven thermal conductivity switching and thermal hysteresis in a ferroelectric. Appl. Phys. Lett. 2019, 115, 192903. [Google Scholar] [CrossRef]
- Dickey, J.M.; Paskin, A. Computer simulation of the lattice dynamics of solids. Phys. Rev. 1969, 188, 1407. [Google Scholar] [CrossRef]
- Haile, J.M. Molecular Dynamics Simulation: Elementary Methods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993; Volume 7, p. 625. [Google Scholar]
- Kim, W. Strategies for engineering phonon transport in thermoelectrics. J. Mater. Chem. C 2015, 3, 10336–10348. [Google Scholar] [CrossRef]
- Pennec, Y.; Rouhani, B.D.; Larabi, H.; Akjouj, A.; Gillet, J.; Vasseur, J.; Thabet, G.J. Phonon transport and waveguiding in a phononic crystal made up of cylindrical dots on a thin homogeneous plate. Phys. Rev. B 2009, 80, 144302. [Google Scholar] [CrossRef]
- Rurali, R.; Colombo, L.; Cartoixà, X.; Wilhelmsen, Ø.; Trinh, T.T.; Bedeaux, D.; Kjelstrup, S. Heat transport through a solid–solid junction: The interface as an autonomous thermodynamic system. Phys. Chem. Chem. Phys. 2016, 18, 13741–13745. [Google Scholar] [CrossRef] [PubMed]
- Dettori, R.; Melis, C.; Cartoixà, X.; Rurali, R.; Colombo, L. Thermal boundary resistance in semiconductors by non-equilibrium thermodynamics. Adv. Phys-X. 2016, 1, 246–261. [Google Scholar] [CrossRef]
- Pollack, G.L. Kapitza resistance. Rev. Mod. Phys. 1969, 41, 48. [Google Scholar] [CrossRef]
- Nan, C.W.; Birringer, R. Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model. Phys. Rev. B 1998, 57, 8264. [Google Scholar] [CrossRef]
Experimental Values | DFT Results [28] | ADP Results | |
---|---|---|---|
4.03 | 4.03 | 4.06 | |
4.23 | 4.11 | 4.18 | |
68.47 | 66.72 | 68.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Li, S.; Wei, L.; Zhang, H.; Wang, X.; Liu, B.; Zhang, Y.; Zhang, R.; Qiu, C. Wide-Temperature Tunable Phonon Thermal Switch Based on Ferroelectric Domain Walls of Tetragonal KTN Single Crystal. Nanomaterials 2023, 13, 376. https://doi.org/10.3390/nano13030376
Zhang S, Li S, Wei L, Zhang H, Wang X, Liu B, Zhang Y, Zhang R, Qiu C. Wide-Temperature Tunable Phonon Thermal Switch Based on Ferroelectric Domain Walls of Tetragonal KTN Single Crystal. Nanomaterials. 2023; 13(3):376. https://doi.org/10.3390/nano13030376
Chicago/Turabian StyleZhang, Shaodong, Shuangru Li, Lei Wei, Huadi Zhang, Xuping Wang, Bing Liu, Yuanyuan Zhang, Rui Zhang, and Chengcheng Qiu. 2023. "Wide-Temperature Tunable Phonon Thermal Switch Based on Ferroelectric Domain Walls of Tetragonal KTN Single Crystal" Nanomaterials 13, no. 3: 376. https://doi.org/10.3390/nano13030376
APA StyleZhang, S., Li, S., Wei, L., Zhang, H., Wang, X., Liu, B., Zhang, Y., Zhang, R., & Qiu, C. (2023). Wide-Temperature Tunable Phonon Thermal Switch Based on Ferroelectric Domain Walls of Tetragonal KTN Single Crystal. Nanomaterials, 13(3), 376. https://doi.org/10.3390/nano13030376