Quantitatively Exploring Giant Optical Anisotropy of Quasi-One-Dimensional Ta2NiS5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Ta2NiS5 Single Crystals
2.2. First-Principles Calculations
3. Results and Discussion
3.1. Quasi-One-Dimensional Structure and Optical Anisotropy of Ta2NiS5
3.2. Quantitative Characterization of the Optical Anisotropy of Ta2NiS5
3.3. Critical Points and Optical Transitions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, Y.Y.; Cai, H.; Dong, J.C.; Yu, Y.L.; Hoffman, A.N.; Liu, C.Z.; Oyedele, A.D.; Lin, Y.C.; Ge, Z.Z.; Puretzky, A.A.; et al. Two-Dimensional Palladium Diselenide with Strong In-Plane Optical Anisotropy and High Mobility Grown by Chemical Vapor Deposition. Adv. Mater. 2020, 32, 1906238. [Google Scholar] [CrossRef]
- Wolverson, D.; Crampin, S.; Kazemi, A.S.; Ilie, A.; Bending, S.J. Raman Spectra of Monolayer, Few-Layer, and Bulk ReSe2: An Anisotropic Layered Semiconductor. Acs Nano 2014, 8, 11154–11164. [Google Scholar] [CrossRef]
- Lin, Y.C.; Komsa, H.P.; Yeh, C.H.; Björkman, T.; Liang, Z.Y.; Ho, C.H.; Huang, Y.S.; Chiu, P.W.; Krasheninnikov, A.V.; Suenaga, K. Single-Layer ReS2: Two-Dimensional Semiconductor with Tunable In-Plane Anisotropy. Acs Nano 2015, 9, 11249–11257. [Google Scholar] [CrossRef]
- Guo, Z.F.; Gu, H.G.; Fang, M.S.; Song, B.K.; Wang, W.; Chen, X.G.; Zhang, C.W.; Jiang, H.; Wang, L.; Liu, S.Y. Complete Dielectric Tensor and Giant Optical Anisotropy in Quasi-One-Dimensional ZrTe5. ACS Mater. Lett. 2021, 3, 525–534. [Google Scholar] [CrossRef]
- Peng, Y.X.; Ding, S.L.; Cheng, M.; Hu, Q.F.; Yang, J.; Wang, F.G.; Xue, M.Z.; Liu, Z.; Lin, Z.C.; Avdeev, M.; et al. Magnetic Structure and Metamagnetic Transitions in the van der Waals Antiferromagnet CrPS4. Adv. Mater. 2020, 32, e2001200. [Google Scholar] [CrossRef]
- Hou, S.J.; Guo, Z.F.; Yang, J.H.; Liu, Y.Y.; Shen, W.F.; Hu, C.G.; Liu, S.Y.; Gu, H.G.; Wei, Z.M. Birefringence and Dichroism in Quasi-1D Transition Metal Trichalcogenides: Direct Experimental Investigation. Small 2021, 17, 2100457. [Google Scholar] [CrossRef]
- Qiao, J.S.; Kong, X.H.; Hu, Z.X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef]
- Xia, F.N.; Wang, H.; Jia, Y.C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458. [Google Scholar] [CrossRef]
- Shen, W.F.; Sun, Z.Y.; Huo, S.C.; Hu, C.G. Directly Evaluating the Optical Anisotropy of Few-Layered Black Phosphorus during Ambient Oxidization. Adv. Opt. Mater. 2022, 10, 2102018. [Google Scholar] [CrossRef]
- Li, L.; Han, W.; Pi, L.; Niu, P.; Han, J.; Wang, C.; Su, B.; Li, H.; Xiong, J.; Bando, Y.; et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54–73. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Ke, C.; Tang, W.; Liu, M.; Huang, F.; Wu, Y.; Wu, Z.; Kang, J. Review of Anisotropic 2D Materials: Controlled Growth, Optical Anisotropy Modulation, and Photonic Applications. Laser Photonics Rev. 2021, 15, 2100322. [Google Scholar] [CrossRef]
- Zhang, T.L.; Du, J.T.; Wang, W.J.; Wu, K.M.; Yue, S.; Liu, X.F.; Shen, W.F.; Hu, C.G.; Wu, M.H.; Qu, Z.; et al. Strong in-plane optical anisotropy in 2D van der Waals antiferromagnet VOCl. Nano Res. 2023, 16, 7481–7488. [Google Scholar] [CrossRef]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Träger, F. Springer Handbook of Lasers and Optics; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2. [Google Scholar]
- Li, Y.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H.M.; van der Zande, A.M.; Chenet, D.A.; Shih, E.-M.; Hone, J.; Heinz, T.F. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 2014, 90, 205422. [Google Scholar] [CrossRef]
- Hu, D.; Yang, X.; Li, C.; Liu, R.; Yao, Z.; Hu, H.; Corder, S.N.G.; Chen, J.; Sun, Z.; Liu, M.; et al. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging. Nat. Commun. 2017, 8, 1471. [Google Scholar] [CrossRef]
- Chen, X.; Hu, D.; Mescall, R.; You, G.; Basov, D.N.; Dai, Q.; Liu, M. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research. Adv. Mater. 2019, 31, 1804774. [Google Scholar] [CrossRef]
- Wintz, D.; Chaudhary, K.; Wang, K.; Jauregui, L.A.; Ambrosio, A.; Tamagnone, M.; Zhu, A.Y.; Devlin, R.C.; Crossno, J.D.; Pistunova, K.; et al. Guided Modes of Anisotropic van der Waals Materials Investigated by near-Field Scanning Optical Microscopy. ACS Photonics 2018, 5, 1196–1201. [Google Scholar] [CrossRef]
- Zhao, M.L.; Shi, Y.J.; Dai, J.; Lian, J. Ellipsometric study of the complex optical constants of a CsPbBr3 perovskite thin film. J. Mater. Chem. C 2018, 6, 10450–10455. [Google Scholar] [CrossRef]
- Gu, H.G.; Song, B.K.; Fang, M.S.; Hong, Y.L.; Chen, X.G.; Jiang, H.; Ren, W.C.; Liu, S.Y. Layer-dependent dielectric and optical properties of centimeter-scale 2D WSe2: Evolution from a single layer to few layers. Nanoscale 2019, 11, 22762–22771. [Google Scholar] [CrossRef]
- Song, B.K.; Gu, H.G.; Zhu, S.M.; Jiang, H.; Chen, X.G.; Zhang, C.W.; Liu, S.Y. Broadband optical properties of graphene and H O P G investigated by spectroscopic Mueller matrix ellipsometry. Appl. Surf. Sci. 2018, 439, 1079–1087. [Google Scholar] [CrossRef]
- Su, B.; Song, Y.; Hou, Y.; Chen, X.; Zhao, J.; Ma, Y.; Yang, Y.; Guo, J.; Luo, J.; Chen, Z.-G. Strong and Tunable Electrical Anisotropy in Type-Ⅱ Weyl Semimetal Candidate W P2 with Broken Inversion Symmetry. Adv. Mater. 2019, 31, 1903498. [Google Scholar] [CrossRef]
- Brittman, S.; Garnett, E.C. Measuring n and k at the Microscale in Single Crystals of CH3NH3PbBr3 Perovskite. J. Phys. Chem. C 2016, 120, 616–620. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, D.; Yan, X.-Q.; Ren, M.; Zhao, X.; Liu, F.; Sun, R.; Li, X.; Li, Z.; Chen, S.; et al. Optical properties of chemical vapor deposition-grown Pt Se2 characterized by spectroscopic ellipsometry. 2D Mater. 2019, 6, 035011. [Google Scholar] [CrossRef]
- Azzam, R.M.A.; Bashara, N.M.; Thorburn Burns, D. Ellipsometry and polarized light: North Holland, Amsterdam, 1987 (ISBN 0-444-87016-4). xvii + 539 pp. Price Dfl. 75.00. Anal. Chim. Acta 1987, 199, 283–284. [Google Scholar] [CrossRef]
- Novikova, T.; De Martino, A.; Hatit, S.B.; Drévillon, B. Application of Mueller polarimetry in conical diffraction for critical dimension measurements in microelectronics. Appl. Opt. 2006, 45, 3688–3697. [Google Scholar] [CrossRef]
- Liu, S.Y.; Chen, X.G.; Zhang, C.W. Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology. Thin Solid Film. 2015, 584, 176–185. [Google Scholar] [CrossRef]
- Alonso, M.I.; Garriga, M.; Alsina, F.; Piñol, S. Determination of the dielectric tensor in anisotropic materials. Appl. Phys. Lett. 1995, 67, 596–598. [Google Scholar] [CrossRef]
- Alonso, M.I.; Garriga, M. Optical properties of anisotropic materials: An experimental approach. Thin Solid Film. 2004, 455–456, 124–131. [Google Scholar] [CrossRef]
- Novikova, T.; Martino, A.D.; Bulkin, P.; Nguyen, Q.; Drévillon, B.; Popov, V.; Chumakov, A. Metrology of replicated diffractive optics with Mueller polarimetry in conical diffraction. Opt. Express 2007, 15, 2033–2046. [Google Scholar] [CrossRef]
- Lautenschlager, P.; Garriga, M.; Vina, L.; Cardona, M. Temperature dependence of the dielectric function and interband critical points in silicon. Phys. Rev. B 1987, 36, 4821–4830. [Google Scholar] [CrossRef]
- Fang, M.S.; Wang, Z.Y.; Gu, H.G.; Tong, M.Y.; Song, B.K.; Xie, X.N.; Zhou, T.; Chen, X.G.; Jiang, H.; Jiang, T.; et al. Layer-dependent dielectric permittivity of topological insulator Bi2 Se3 thin films. Appl. Surf. Sci. 2020, 509, 144822. [Google Scholar] [CrossRef]
- Ye, M.; Volkov, P.A.; Lohani, H.; Feldman, I.; Kim, M.; Kanigel, A.; Blumberg, G. Lattice dynamics of the excitonic insulator Ta2Ni(Se1-x Sx)5. Phys. Rev. B 2021, 104, 045102. [Google Scholar] [CrossRef]
- Windgätter, L.; Rösner, M.; Mazza, G.; Hübener, H.; Georges, A.; Millis, A.J.; Latini, S.; Rubio, A. Common microscopic origin of the phase transitions in Ta2 Ni S5 and the excitonic insulator candidate Ta2NiSe5. NPJ Comput. Mater. 2021, 7, 210. [Google Scholar] [CrossRef]
- Mu, K.; Chen, H.; Li, Y.; Zhang, Y.; Wang, P.; Zhang, B.; Liu, Y.; Zhang, G.; Song, L.; Sun, Z. Electronic structures of layered Ta2NiS5 single crystals revealed by high-resolution angle-resolved photoemission spectroscopy. J. Mater. Chem. C 2018, 6, 3976–3981. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, J.; Zhang, Y.; Wang, X.; Wang, J.; Yu, P.; Liu, Z.; Wei, Z. Ternary chalcogenide Ta2NiS5 nanosheets for broadband pulse generation in ultrafast fiber lasers. Nanophotonics 2020, 9, 2341–2349. [Google Scholar] [CrossRef]
- Liu, S.; Huang, H.; Lu, J.; Xu, N.; Qu, J.; Wen, Q. Liquid-Phase Exfoliation of Ta2NiS5 and Its Application in Near-Infrared Mode-Locked Fiber Lasers with Evanescent Field Interactions and Passively Q-Switched Bulk Laser. Nanomaterials 2022, 12, 695. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Yang, L.; He, Y.; Chen, L.; Li, J.; Miao, L.; Zhao, C. Layered Ta2NiS5 Q-Switcher for Mid-Infrared Fluoride Fiber Laser. IEEE Photonics J. 2021, 13, 1–4. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, B.; He, J.; Nie, H.; Li, G.; Liu, J.; Shi, B.; Wang, R.; Yang, K. Ternary chalcogenide Ta2 Ni S5 as a saturable absorber for a 1.9 μm passively Q-switched bulk laser. Opt. Lett. 2019, 44, 451–454. [Google Scholar] [CrossRef]
- Huang, R.; He, X.; Liu, H.; Pan, C.; Zhou, L.; Yang, Y.; Yu, S.; Cui, Z.; Li, L. Operation of a passively Q-switched Tm:YAP laser with Ta2NiS5 as a saturable absorber. Microw. Opt. Technol. Lett. 2023. [Google Scholar] [CrossRef]
- Tan, C.; Yu, P.; Hu, Y.; Chen, J.; Huang, Y.; Cai, Y.; Luo, Z.; Li, B.; Lu, Q.; Wang, L.; et al. High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors. J. Am. Chem. Soc. 2015, 137, 10430–10436. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Du, Y.; Wu, W.; Joseph, N.B.; Deng, X.; Wang, J.; Ma, J.; Shi, Z.; Liu, B.; Ma, Y.; et al. Giant Superlinear Power Dependence of Photocurrent Based on Layered Ta2NiS5 Photodetector. Adv. Sci. 2023, 10, 2300413. [Google Scholar] [CrossRef] [PubMed]
- Larkin, T.I.; Dawson, R.D.; Höppner, M.; Takayama, T.; Isobe, M.; Mathis, Y.L.; Takagi, H.; Keimer, B.; Boris, A.V. Infrared phonon spectra of quasi-one-dimensional Ta2NiSe5 and Ta2NiS5. Phys. Rev. B 2018, 98, 125113. [Google Scholar] [CrossRef]
- Su, Y.; Deng, C.; Liu, J.; Zheng, X.; Wei, Y.; Chen, Y.; Yu, W.; Guo, X.; Cai, W.; Peng, G.; et al. Highly in-plane anisotropy of thermal transport in suspended ternary chalcogenide Ta2 Ni S5. Nano Res. 2022, 15, 6601–6606. [Google Scholar] [CrossRef]
- Sunshine, S.A.; Ibers, J.A. Structure and physical properties of the new layered ternary chalcogenides tantalum nickel sulfide (Ta2NiS5) and tantalum nickel selenide (Ta2NiSe5). Inorg. Chem. 1985, 24, 3611–3614. [Google Scholar] [CrossRef]
- Li, L.; Gong, P.; Wang, W.; Deng, B.; Pi, L.; Yu, J.; Zhou, X.; Shi, X.; Li, H.; Zhai, T. Strong In-Plane Anisotropies of Optical and Electrical Response in Layered Dimetal Chalcogenide. ACS Nano 2017, 11, 10264–10272. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-L.; Zhang, X.; Lin, M.-L.; Tan, P.-H. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials*. Chin. Phys. B 2017, 26, 067802. [Google Scholar] [CrossRef]
- Jellison, G.E., Jr.; Modine, F.A. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996, 69, 371–373. [Google Scholar] [CrossRef]
- Peiponen, K.E.; Vartiainen, E.M. Kramers-Kronig relations in optical data inversion. Phys. Rev. B 1991, 44, 8301–8303. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Hong, M.C.; Luo, J.H.; Zhao, S.G. Achieving effective balance between bandgap and birefringence by confining π-conjugation in an optically anisotropic crystal. Sci. Bull. 2022, 67, 2276–2279. [Google Scholar] [CrossRef]
- Wang, X.T.; Li, Y.T.; Huang, L.; Jiang, X.-W.; Jiang, L.; Dong, H.L.; Wei, Z.M.; Li, J.B.; Hu, W.P. Short-Wave Near-Infrared Linear Dichroism of Two-Dimensional Germanium Selenide. J. Am. Chem. Soc. 2017, 139, 14976–14982. [Google Scholar] [CrossRef]
- Yang, H.; Jussila, H.; Autere, A.; Komsa, H.-P.; Ye, G.; Chen, X.; Hasan, T.; Sun, Z. Optical Waveplates Based on Birefringence of Anisotropic Two-Dimensional Layered Materials. ACS Photonics 2017, 4, 3023–3030. [Google Scholar] [CrossRef]
- Sinton, W.M. Birefringence of Rutile in the Infrared. J. Opt. Soc. Am. 1961, 51, 1309_1–1310. [Google Scholar] [CrossRef]
- Park, J.; Eom, S.H.; Lee, H.; Da Silva, J.L.F.; Kang, Y.-S.; Lee, T.-Y.; Khang, Y.H. Optical properties of pseudobinary GeTe, Ge2Sb2Te5, GeSb2Te4, GeSb4Te7, and Sb2 Te3 from ellipsometry and density functional theory. Phys. Rev. B 2009, 80, 115209. [Google Scholar] [CrossRef]
- Toyozawa, Y.; Inoue, M.; Inui, T.; Okazaki, M.; Hanamura, E. Coexistence of Local and Band Characters in the Absorption Spectra of Solids I. Formulation. J. Phys. Soc. Jpn. 1967, 22, 1337–1349. [Google Scholar] [CrossRef]
Axis | Critical Point | Center Energy E0 (eV) | Position in the BZ | Energy Bands Involved in the Transition |
---|---|---|---|---|
a-axis | Aa | 0.53 | Z | V1-C1 |
Ba | 1.25 | Z-Γ | V6-C2 | |
Ca | 1.53 | Y-X1 | V7-C2 | |
Da | 1.55 | T | V7-C2 | |
Ea | 2.38 | A1 | V1-C2 | |
Fa | 2.40 | S | V4-C1 | |
Ga | 2.97 | T-A1 | V4-C10 | |
Ha | 4.05 | Γ-X | V1-C9 | |
b-axis | Ab | 0.77 | Γ-X | V2-C2 |
Bb | 1.61 | Y-X1 | V1-C1 | |
Cb | 1.78 | Y-X1 | V2-C1 | |
Db | 1.85 | A1-T | V2-C1 | |
Eb | 2.40 | S | V4-C1 | |
Fb | 3.15 | X1 | V1-C6 | |
Gb | 4.44 | S-R | V4-C10 | |
c-axis | Ac | 0.75 | Γ | V4-C1 |
Bc | 1.08 | A-Γ | V6-C1 | |
Cc | 1.59 | T | V6-C3 | |
Dc | 1.61 | Γ-X | V1-C1 | |
Ec | 1.76 | Y | V7-C3 | |
Fc | 2.04 | S-R | V1-C1 | |
Gc | 2.32 | Z-Γ | V2-C7 | |
Hc | 3.49 | A | V4-C6 | |
Ic | 3.80 | A1 | V3-C9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Gu, H.; Guo, Z.; Ding, K.; Liu, S. Quantitatively Exploring Giant Optical Anisotropy of Quasi-One-Dimensional Ta2NiS5. Nanomaterials 2023, 13, 3098. https://doi.org/10.3390/nano13243098
Zhang Q, Gu H, Guo Z, Ding K, Liu S. Quantitatively Exploring Giant Optical Anisotropy of Quasi-One-Dimensional Ta2NiS5. Nanomaterials. 2023; 13(24):3098. https://doi.org/10.3390/nano13243098
Chicago/Turabian StyleZhang, Qihang, Honggang Gu, Zhengfeng Guo, Ke Ding, and Shiyuan Liu. 2023. "Quantitatively Exploring Giant Optical Anisotropy of Quasi-One-Dimensional Ta2NiS5" Nanomaterials 13, no. 24: 3098. https://doi.org/10.3390/nano13243098
APA StyleZhang, Q., Gu, H., Guo, Z., Ding, K., & Liu, S. (2023). Quantitatively Exploring Giant Optical Anisotropy of Quasi-One-Dimensional Ta2NiS5. Nanomaterials, 13(24), 3098. https://doi.org/10.3390/nano13243098