The Role of MWCNTs in Enhancing the Foam Stability and Rheological Behavior of Cement Pastes That Contain Air-Entraining and Superplasticizer Admixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Suspensions and Cement Paste
2.2.1. Preparation of MWCNTs Water Suspensions
2.2.2. Preparation of Fresh Suspensions for Foam Index Test
2.2.3. Preparation of Fresh Paste
2.3. Methods of Testing
2.3.1. Foam Index Test
2.3.2. Viscosity Measurements
2.3.3. Electrical Conductivity and pH Testing
2.3.4. Setting Times
3. Results
3.1. The Foam Index Test
3.2. Dynamic Viscosity of Foam
3.3. Dynamic Viscosity of Foamed Suspension with Cement Addition
3.4. Properties of Fresh Cement Paste
3.4.1. Electrical Conductivity
3.4.2. Spread Area
3.5. Setting Time of Fresh Cement Paste
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tunstall, L.E.; Ley, M.T.; Scherer, G.W. Air Entraining Admixtures: Mechanisms, Evaluations, and Interactions. Cem. Concr. Res. 2021, 150, 106557. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreira Pinto, A.P.; Gomes, A.; Candeias, A. Suitability of Different Surfactants as Air-Entraining Admixtures for Lime Mortars. Constr. Build. Mater. 2020, 256, 118986. [Google Scholar] [CrossRef]
- Deniz, F. Effective Removal of Maxilon Red GRL from Aqueous Solutions by Walnut Shell: Nonlinear Kinetic and Equilibrium Models. Environ. Prog. Sustain. Energy 2014, 33, 396–401. [Google Scholar] [CrossRef]
- Beltrán, J.M.; Chica, L. On Fresh State Behavior of Foamed Cement Pastes and Its Influence on Hardened Performance. Constr. Build. Mater. 2023, 368, 130518. [Google Scholar] [CrossRef]
- Elsener, B.; Angst, U. Science and Technology of Concrete Admixtures, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780081006931. [Google Scholar]
- Hilal, A.A.; Thom, N.H.; Dawson, A.R. On Entrained Pore Size Distribution of Foamed Concrete. Constr. Build. Mater. 2015, 75, 227–233. [Google Scholar] [CrossRef]
- Yu, X.G.; Luo, S.S.; Gao, Y.N.; Wang, H.F.; Li, Y.X.; Wei, Y.R.; Wang, X.J. Pore Structure and Microstructure of Foam Concrete. Adv. Mater. Res. 2011, 177, 530–532. [Google Scholar] [CrossRef]
- Ke, G.; Zhang, J.; Tian, B.; Wang, J. Characteristic Analysis of Concrete Air Entraining Agents in Different Media. Cem. Concr. Res. 2020, 135, 106142. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Martín-Pascual, J.; Martín-Morales, M.; Valverde-Palacios, I.; Zamorano, M. Effects of Water to Cement Ratio, Recycled Fine Aggregate and Air Entraining/Plasticizer Admixture on Masonry Mortar Properties. Constr. Build. Mater. 2020, 230, 116929. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J.; Evangelista, L.; Pacheco, J. Superplasticizer’s Efficiency on the Mechanical Properties of Recycled Aggregates Concrete: Influence of Recycled Aggregates Composition and Incorporation Ratio. Constr. Build. Mater. 2017, 153, 129–138. [Google Scholar] [CrossRef]
- Mangane, M.B.C.; Argane, R.; Trauchessec, R.; Lecomte, A.; Benzaazoua, M. Influence of Superplasticizers on Mechanical Properties and Workability of Cemented Paste Backfill. Miner. Eng. 2018, 116, 3–14. [Google Scholar] [CrossRef]
- Hou, L.; Li, J.; Lu, Z.; Niu, Y. Influence of Foaming Agent on Cement and Foam Concrete. Constr. Build. Mater. 2021, 280, 122399. [Google Scholar] [CrossRef]
- Shah, H.A.; Yuan, Q.; Zuo, S. Air Entrainment in Fresh Concrete and Its Effects on Hardened Concrete—A Review. Constr. Build. Mater. 2021, 274, 121835. [Google Scholar] [CrossRef]
- Radlinski, M.; Oleic, J.; Zhang, Q.; Peterson, K. Evaluation of the Critical Air-Void System Parameters for Freeze-Thaw Resistant Ternary Concrete Using the Manual Point-Count and the Flatbed Scanner Methods. ASTM Spec. Tech. Publ. 2010, 1511 STP, 64–84. [Google Scholar] [CrossRef]
- Nowak-Michta, A. Impact Analysis of Air-Entraining and Superplasticizing Admixtures on Concrete Compressive Strength. Procedia Struct. Integr. 2019, 23, 77–82. [Google Scholar] [CrossRef]
- Navarro-Blasco, I.; Pérez-Nicolás, M.; Fernández, J.M.; Duran, A.; Sirera, R.; Alvarez, J.I. Assessment of the Interaction of Polycarboxylate Superplasticizers in Hydrated Lime Pastes Modified with Nanosilica or Metakaolin as Pozzolanic Reactives. Constr. Build. Mater. 2014, 73, 1–12. [Google Scholar] [CrossRef]
- Pundienė, I.; Kičaitė, A.; Pranckevičienė, J. Impact of Different Types of Plasticizing Admixtures on the Rheological Properties and Hydration of Blended Cements. J. Therm. Anal. Calorim. 2015, 123, 1099–1109. [Google Scholar] [CrossRef]
- Al-Neshawy, F.; Ojala, T.; Punkki, J. Stability of Air Content in Fresh Concretes with PCE-Based Superplasticizers. Nord. Concr. Res. 2019, 60, 145–158. [Google Scholar] [CrossRef]
- Turowski, M.; Jacobsen, S. Air Entrainment in Fly Ash Concrete: Effect of Sequence of AEA-SP Addition; NTNU: Trondheim, Sweden, 2016. [Google Scholar]
- Rath, S.; Ouchi, M. Effective Mixing Method for Stability of Air Content in Fresh Mortar of Self-Compacting Concrete in Terms of Air Diameter. Internet J. Soc. Soc. Manag. Syst. 2015, 10, 15–6550. [Google Scholar]
- Barabanshchikov, Y.; Komarinskiy, M. Effect of Air-Entraining Agent LHD on the Technological Properties of Concrete Mix Containing Superplasticizer S-3. Appl. Mech. Mater. 2015, 725–726, 419–424. [Google Scholar] [CrossRef]
- Ley, M.T.; Welchel, D.; Peery, J.; LeFlore, J. Determining the Air-Void Distribution in Fresh Concrete with the Sequential Air Method. Constr. Build. Mater. 2017, 150, 723–737. [Google Scholar] [CrossRef]
- Hall, H.; Ley, M.T.; Welchel, D.; Peery, J.; Leflore, J.; Khatibmasjedi, M.; Gudimettla, J.M.; Praul, M. Field and Laboratory Validation of the Sequential Air Method. Mater. Struct. Constr. 2020, 53, 1–26. [Google Scholar] [CrossRef]
- Puthipad, N.; Ouchi, M.; Attachaiyawuth, A. Effects of Fly Ash, Mixing Procedure and Type of Air-Entraining Agent on Coalescence of Entrained Air Bubbles in Mortar of Self-Compacting Concrete at Fresh State. Constr. Build. Mater. 2018, 180, 437–444. [Google Scholar] [CrossRef]
- Pundienė, I.; Pranckevičienė, J.; Kligys, M.; Kizinievič, O. The Synergetic Interaction of Chemical Admixtures on the Properties of Eco-Friendly Lightweight Concrete from Industrial Technogenic Waste. Constr. Build. Mater. 2020, 256, 119461. [Google Scholar] [CrossRef]
- Collins, F.; Lambert, J.; Duan, W.H. The Influences of Admixtures on the Dispersion, Workability, and Strength of Carbon Nanotube-OPC Paste Mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- Nadiv, R.; Vasilyev, G.; Shtein, M.; Peled, A.; Zussman, E.; Regev, O. The Multiple Roles of a Dispersant in Nanocomposite Systems. Compos. Sci. Technol. 2016, 133, 192–199. [Google Scholar] [CrossRef]
- Jalal, M.; Teimortashlu, E.; Grasley, Z. Performance-Based Design and Optimization of Rheological and Strength Properties of Self-Compacting Cement Composite Incorporating Micro/Nano Admixtures. Compos. Part B Eng. 2019, 163, 497–510. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Li, Q. Mechanical Properties and Microstructure of Multi-Walled Carbon Nanotube-Reinforced Cement Paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Carriço, A.; Bogas, J.A.; Hawreen, A.; Guedes, M. Durability of Multi-Walled Carbon Nanotube Reinforced Concrete. Constr. Build. Mater. 2018, 164, 121–133. [Google Scholar] [CrossRef]
- Nambiar, E.K.K.; Ramamurthy, K. Influence of Filler Type on the Properties of Foam Concrete. Cem. Concr. Compos. 2006, 28, 475–480. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Experimental Research on Properties of Foamed Concrete Reinforced with Polypropylene Fibers. Jianzhu Cailiao Xuebao/J. Build. Mater. 2010, 13, 286–290. [Google Scholar] [CrossRef]
- Keriene, J.; Kligys, M.; Laukaitis, A.; Yakovlev, G.; Špokauskas, A.; Aleknevičius, M. The Influence of Multi-Walled Carbon Nanotubes Additive on Properties of Non-Autoclaved and Autoclaved Aerated Concretes. Constr. Build. Mater. 2013, 49, 527–535. [Google Scholar] [CrossRef]
- Laukaitis, A.; Kerienė, J.; Kligys, M.; Mikulskis, D.; Lekūnaitė, L. Influence of Mechanically Treated Carbon Fibre Additives on Structure Formation and Properties of Autoclaved Aerated Concrete. Constr. Build. Mater. 2012, 26, 362–371. [Google Scholar] [CrossRef]
- Petrunin, S.; Vaganov, V.; Reshetniak, V.; Zakrevskaya, L. Influence of Carbon Nanotubes on the Structure Formation of Cement Matrix. IOP Conf. Ser. Mater. Sci. Eng. 2015, 96, 012046. [Google Scholar] [CrossRef]
- Wang, S.; Lim, J.L.G.; Tan, K.H. Performance of Lightweight Cementitious Composite Incorporating Carbon Nanofibers. Cem. Concr. Compos. 2020, 109, 103561. [Google Scholar] [CrossRef]
- Kostrzanowska-Siedlarz, A. Statistical Methods for Determining Rheological Parameters of Mortars Modified with Multi-Walled Carbon Nanotubes. Constr. Build. Mater. 2020, 253, 119213. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, X.; Wang, J.; Li, S.; Lv, C.; Dong, Y. Effect of Fly Ash on Rheological Properties of Graphene Oxide Cement Paste. Constr. Build. Mater. 2017, 138, 35–44. [Google Scholar] [CrossRef]
- Alatawna, A.; Birenboim, M.; Nadiv, R.; Buzaglo, M.; Peretz-Damari, S.; Peled, A.; Regev, O.; Sripada, R. The Effect of Compatibility and Dimensionality of Carbon Nanofillers on Cement Composites. Constr. Build. Mater. 2020, 232, 117141. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Batis, G.; Danoglidis, P.A.; Zacharopoulou, A.K.; Zacharopoulou, E.K.; Falara, M.G.; Shah, S.P. Effect of CNT and CNF Loading and Count on the Corrosion Resistance, Conductivity and Mechanical Properties of Nanomodified OPC Mortars. Constr. Build. Mater. 2017, 147, 48–57. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Danoglidis, P.A.; Falara, M.G.; Nitodas, S.F. Fresh and Mechanical Properties, and Strain Sensing of Nanomodified Cement Mortars: The Effects of MWCNT Aspect Ratio, Density and Functionalization. Cem. Concr. Compos. 2017, 82, 137–151. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M.C. Microstructure and Mechanical Properties of Carbon Nanotube Reinforced Cementitious Composites Developed Using a Novel Dispersion Technique. Cem. Concr. Res. 2015, 73, 215–227. [Google Scholar] [CrossRef]
- Vesmawala, G.R.; Vaghela, A.R.; Yadav, K.D.; Patil, Y. Effectiveness of Polycarboxylate as a Dispersant of Carbon Nanotubes in Concrete. Mater. Today Proc. 2020, 28, 1170–1174. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X. Research on the Influence of Carbon Nanotubes (CNTs) on Compressive Strength and Air-Void Structure of Ultra-Light Foamed Concrete. Mech. Adv. Mater. Struct. 2019, 26, 2009–2016. [Google Scholar] [CrossRef]
- Metaxa, Z.S.; Seo, J.W.T.; Konsta-Gdoutos, M.S.; Hersam, M.C.; Shah, S.P. Highly Concentrated Carbon Nanotube Admixture for Nano-Fiber Reinforced Cementitious Materials. Cem. Concr. Compos. 2012, 34, 612–617. [Google Scholar] [CrossRef]
- EN 197-1:2011; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2011.
- Gorzelańczyk, T.; Hoła, J. Pore Structure of Self-Compacting Concretes Made Using Different Superplasticizers. Arch. Civ. Mech. Eng. 2011, 11, 611–621. [Google Scholar] [CrossRef]
- Plank, J.; Hirsch, C. Impact of Zeta Potential of Early Cement Hydration Phases on Superplasticizer Adsorption. Cem. Concr. Res. 2007, 37, 537–542. [Google Scholar] [CrossRef]
- Leonavičius, D.; Pundienė, I.; Pranckevičienė, J.; Kligys, M. Selection of Superplasticisers for Improving the Rheological and Mechanical Properties of Cement Paste with CNTs. Constr. Build. Mater. 2020, 253, 119182. [Google Scholar] [CrossRef]
- Sanchez, F.; Sobolev, K. Nanotechnology in Concrete—A Review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Cwirzen, A.; Habermehl-Cwirzen, K.; Nasibulin, A.G.; Kaupinen, E.I.; Mudimela, P.R.; Penttala, V. SEM/AFM Studies of Cementitious Binder Modified by MWCNT and Nano-Sized Fe Needles. Mater. Charact. 2009, 60, 735–740. [Google Scholar] [CrossRef]
- Makar, J.M.; Chan, G.W. Growth of Cement Hydration Products on Single-Walled Carbon Nanotubes. J. Am. Ceram. Soc. 2009, 92, 1303–1310. [Google Scholar] [CrossRef]
- Atahan, H.N.; Carlos, C.; Chae, S.; Monteiro, P.J.M.; Bastacky, J. The Morphology of Entrained Air Voids in Hardened Cement Paste Generated with Different Anionic Surfactants. Cem. Concr. Compos. 2008, 30, 566–575. [Google Scholar] [CrossRef]
- EN 196-3:2017; Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness. European Committee for Standardization: Brussels, Belgium, 2017.
- Ghafari, E.; Ghahari, S.; Feys, D.; Khayat, K.; Baig, A.; Ferron, R. Admixture Compatibility with Natural Supplementary Cementitious Materials. Cem. Concr. Compos. 2020, 112, 103683. [Google Scholar] [CrossRef]
- Izaguirre, A.; Lanas, J.; Álvarez, J.I. Effect of Water-Repellent Admixtures on the Behaviour of Aerial Lime-Based Mortars. Cem. Concr. Res. 2009, 39, 1095–1104. [Google Scholar] [CrossRef]
- Corr, D.J.; Lebourgeois, J.; Monteiro, P.J.M.; Bastacky, S.J.; Gartner, E.M. Air Void Morphology in Fresh Cement Pastes. Cem. Concr. Res. 2002, 32, 1025–1031. [Google Scholar] [CrossRef]
- Feneuil, B.; Roussel, N.; Pitois, O. Optimal Cement Paste Yield Stress for the Production of Stable Cement Foams. Cem. Concr. Res. 2019, 120, 142–151. [Google Scholar] [CrossRef]
- Assi, L.; Alsalman, A.; Bianco, D.; Ziehl, P.; El-Khatib, J.; Bayat, M.; Hussein, F.H. Multiwall Carbon Nanotubes (MWCNTs) Dispersion & Mechanical Effects in OPC Mortar & Paste: A Review. J. Build. Eng. 2021, 43, 102512. [Google Scholar] [CrossRef]
- Gorlier, F.; Khidas, Y.; Pitois, O. Yielding of Complex Liquid Foams. J. Rheol. 2017, 61, 919–930. [Google Scholar] [CrossRef]
- Roussel, N.; Ovarlez, G.; Garrault, S.; Brumaud, C. The Origins of Thixotropy of Fresh Cement Pastes. Cem. Concr. Res. 2012, 42, 148–157. [Google Scholar] [CrossRef]
- Rosen, M.J. Surfactants and Interfacial Phenomena; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Lomax, E.G. Amphoteric Surfactants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1996; Volume 59, ISBN 0824793927. [Google Scholar]
- Jolicoeur, C.; To, T.C.; Nguyen, T.S.; Hill, R.; Pagé, M. Mode of Action of Anionic Surfactants for Air Entrainment in Cement Pastes W-w/o Fly Ash. In Proceedings of the World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 4–7 May 2009; pp. 1–19. [Google Scholar]
- Cannon, C.; Tepper, J.; Apblett, A.; Ley, M.T. Investigation of the Effectiveness of Surfactants with Different Partition Coefficients to Entrain Air in Cement Paste. Adv. Civ. Eng. Mater. 2016, 5, 38–50. [Google Scholar] [CrossRef]
- Şahin, Y.; Akkaya, Y.; Boylu, F.; Taşdemir, M.A. Characterization of Air Entraining Admixtures in Concrete Using Surface Tension Measurements. Cem. Concr. Compos. 2017, 82, 95–104. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Anand; Taneja, S.; Kumari, S.P. Effect of Accelerants on the Immediate and the Delayed Sealing Ability of Mineral Trioxide Aggregate When Used as an Apical Plug: An in Vitro Study. J. Conserv. Dent. 2014, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Skripkiunas, G.; Karpova, E.; Bendoraitiene, J.; Barauskas, I. Effect of MWCNT and PCE Plasticizer on the Properties of Cement Pastes. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012032. [Google Scholar] [CrossRef]
- Qiao, M.; Shan, G.; Chen, J.; Wu, S.; Gao, N.; Ran, Q.; Liu, J. Effects of Salts and Adsorption on the Performance of Air Entraining Agent with Different Charge Type in Solution and Cement Mortar. Constr. Build. Mater. 2020, 242, 118188. [Google Scholar] [CrossRef]
- Leonavičius, D.; Pundienė, I.; Pranckevičienė, J.; Girskas, G.; Kligys, M. The effect of the electrical conductivity of superplasticizers on the fluidity and early hydration parameters of cement paste. Ceramics-Silikáty 2019, 63, 390–398. [Google Scholar] [CrossRef]
- Yadav, C.; Saini, A.; Zhang, W.; You, X.; Chauhan, I.; Mohanty, P.; Li, X. Plant-Based Nanocellulose: A Review of Routine and Recent Preparation Methods with Current Progress in Its Applications as Rheology Modifier and 3D Bioprinting. Int. J. Biol. Macromol. 2021, 166, 1586–1616. [Google Scholar] [CrossRef] [PubMed]
- Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M.; Kairytė, A. The Effect of Multi-Walled Carbon Nanotubes on the Rheological Properties and Hydration Process of Cement Pastes. Constr. Build. Mater. 2018, 189, 947–954. [Google Scholar] [CrossRef]
- Falliano, D.; De Domenico, D.; Ricciardi, G.; Gugliandolo, E. Experimental Investigation on the Compressive Strength of Foamed Concrete: Effect of Curing Conditions, Cement Type, Foaming Agent and Dry Density. Constr. Build. Mater. 2018, 165, 735–749. [Google Scholar] [CrossRef]
- Panesar, D.K. Cellular Concrete Properties and the Effect of Synthetic and Protein Foaming Agents. Constr. Build. Mater. 2013, 44, 575–584. [Google Scholar] [CrossRef]
- Lange, A.; Plank, J. Study on the Foaming Behaviour of Allyl Ether-Based Polycarboxylate Superplasticizers. Cem. Concr. Res. 2012, 42, 484–489. [Google Scholar] [CrossRef]
- Burgos-Montes, O.; Palacios, M.; Rivilla, P.; Puertas, F. Compatibility between Superplasticizer Admixtures and Cements with Mineral Additions. Constr. Build. Mater. 2012, 31, 300–309. [Google Scholar] [CrossRef]
- Sathyan, D.; Anand, K.B. Influence of Superplasticizer Family on the Durability Characteristics of Fly Ash Incorporated Cement Concrete. Constr. Build. Mater. 2019, 204, 864–874. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, K.M.; Kim, Y.H.; Yim, H.; Bae, D.B. Ultrasonic In-Situ Monitoring of Setting Process of High-Performance Concrete. Cem. Concr. Res. 2004, 34, 631–640. [Google Scholar] [CrossRef]
- Li, Y.; Lin, H. Experimental Study on the Effect of Different Dispersed Degrees Carbon Nanotubes on the Modification of Magnesium Phosphate Cement. Constr. Build. Mater. 2019, 200, 240–247. [Google Scholar] [CrossRef]
- Kim, H.K.; Nam, I.W.; Lee, H.K. Enhanced Effect of Carbon Nanotube on Mechanical and Electrical Properties of Cement Composites by Incorporation of Silica Fume. Compos. Struct. 2014, 107, 60–69. [Google Scholar] [CrossRef]
- Zou, B.; Chen, S.J.; Korayem, A.H.; Collins, F.; Wang, C.M.; Duan, W.H. Effect of Ultrasonication Energy on Engineering Properties of Carbon Nanotube Reinforced Cement Pastes. Carbon 2015, 85, 212–220. [Google Scholar] [CrossRef]
- Reinhardt, H.W.; Grosse, C.U. Continuous Monitoring of Setting and Hardening of Mortar and Concrete. Constr. Build. Mater. 2004, 18, 145–154. [Google Scholar] [CrossRef]
Admixtures Type | ||||
---|---|---|---|---|
SP(LS) | SP(PA) | SP(PCE) | AEA | |
pH | 6.21 | 8.12 | 4.7 | 8.05 |
Electrical conductivity, S/m | 2011 × 10−4 | 551 × 10−4 | 367 × 10−4 | 320 × 10−4 |
Density, g/cm3 | 1.14 | 1.06 | 1.06 | 1.30 |
Color | dark | yellow-brown | brown | white |
Dry matter content, % | 31.0 | 27.0 | 27.0 | 92 |
Molecular weight, g/mol | 35.0 | 39.4 | 51.0 | – |
Batch | Cement | MWCNTs * | AEA * | SP(LS) * | SP(PA) * | SP(PCE) * | Water |
---|---|---|---|---|---|---|---|
W0 | – | 0 | – | – | – | – | 40 |
W1 | – | 0.000037 | – | – | – | – | 40 |
W2 | – | 0.00037 | – | – | – | – | 40 |
W3 | – | 0.0037 | – | – | – | – | 40 |
W4 | – | 0.037 | – | – | – | – | 40 |
W5 | – | 0.37 | – | – | – | – | 40 |
W0-A | – | 0 | 0.03 | – | – | – | 40 |
W1-A | – | 0.000037 | 0.03 | – | – | – | 40 |
W2-A | – | 0.00037 | 0.03 | – | – | – | 40 |
W3-A | – | 0.0037 | 0.03 | – | – | – | 40 |
W4-A | – | 0.037 | 0.03 | – | – | – | 40 |
W5-A | – | 0.37 | 0.03 | – | – | – | 40 |
W0-A-LS | – | 0 | 0.03 | 0.2 | – | – | 40 |
W1-A-LS | – | 0.000037 | 0.03 | 0.2 | – | – | 40 |
W2-A-LS | – | 0.00037 | 0.03 | 0.2 | – | – | 40 |
W3-A-LS | – | 0.0037 | 0.03 | 0.2 | – | – | 40 |
W4-A-LS | – | 0.037 | 0.03 | 0.2 | – | – | 40 |
W5-A-LS | – | 0.37 | 0.03 | 0.2 | – | – | 40 |
W0-A-PA | – | 0 | 0.03 | – | 0.2 | – | 40 |
W1-A-PA | – | 0.000037 | 0.03 | – | 0.2 | – | 40 |
W2-A-PA | – | 0.00037 | 0.03 | – | 0.2 | – | 40 |
W3-A-PA | – | 0.0037 | 0.03 | – | 0.2 | – | 40 |
W4-A-PA | – | 0.037 | 0.03 | – | 0.2 | – | 40 |
W5-A-PA | – | 0.37 | 0.03 | – | 0.2 | – | 40 |
W0-A-PCE | – | 0 | 0.03 | – | – | 0.2 | 40 |
W1-A-PCE | – | 0.000037 | 0.03 | – | – | 0.2 | 40 |
W2-A-PCE | – | 0.00037 | 0.03 | – | – | 0.2 | 40 |
W3-A-PCE | – | 0.0037 | 0.03 | – | – | 0.2 | 40 |
W4-A-PCE | – | 0.037 | 0.03 | – | – | 0.2 | 40 |
W5-A-PCE | – | 0.37 | 0.03 | – | – | 0.2 | 40 |
C-W0-A | 8 | 0 | 0.03 | – | – | – | 40 |
C-W1-A | 8 | 0.000037 | 0.03 | – | – | – | 40 |
C-W2-A | 8 | 0.00037 | 0.03 | – | – | – | 40 |
C-W3-A | 8 | 0.0037 | 0.03 | – | – | – | 40 |
C-W4-A | 8 | 0.037 | 0.03 | – | – | – | 40 |
C-W5-A | 8 | 0.37 | 0.03 | – | – | – | 40 |
C-W0-A-LS | 8 | 0 | 0.03 | 0.2 | – | – | 40 |
C-W1-A-LS | 8 | 0.000037 | 0.03 | 0.2 | – | – | 40 |
C-W2-A-LS | 8 | 0.00037 | 0.03 | 0.2 | – | – | 40 |
C-W3-A-LS | 8 | 0.0037 | 0.03 | 0.2 | – | – | 40 |
C-W4-A-LS | 8 | 0.037 | 0.03 | 0.2 | – | – | 40 |
C-W5-A-LS | 8 | 0.37 | 0.03 | 0.2 | – | – | 40 |
C-W0-A-PA | 8 | 0 | 0.03 | – | 0.2 | – | 40 |
C-W1-A-PA | 8 | 0.000037 | 0.03 | – | 0.2 | – | 40 |
C-W2-A-PA | 8 | 0.00037 | 0.03 | – | 0.2 | – | 40 |
C-W3-A-PA | 8 | 0.0037 | 0.03 | – | 0.2 | – | 40 |
C-W4-A-PA | 8 | 0.037 | 0.03 | – | 0.2 | – | 40 |
C-W5-A-PA | 8 | 0.37 | 0.03 | – | 0.2 | – | 40 |
C-W0-A-PCE | 8 | 0 | 0.03 | – | – | 0.2 | 40 |
C-W1-A-PCE | 8 | 0.000037 | 0.03 | – | – | 0.2 | 40 |
C-W2-A-PCE | 8 | 0.00037 | 0.03 | – | – | 0.2 | 40 |
C-W3-A-PCE | 8 | 0.0037 | 0.03 | – | – | 0.2 | 40 |
C-W4-A-PCE | 8 | 0.037 | 0.03 | – | – | 0.2 | 40 |
C-W5-A-PCE | 8 | 0.37 | 0.03 | – | – | 0.2 | 40 |
Batch | Cement | MWCNTs * | AEA * | SP(LS) * | SP(PA) * | SP(PCE) * | W/C Ratio |
---|---|---|---|---|---|---|---|
K-C0 | 100 | 0 | – | – | – | – | 0.27 |
K-C1 | 100 | 0.00005 | – | – | – | – | 0.27 |
K-C2 | 100 | 0.0005 | – | – | – | – | 0.27 |
K-C3 | 100 | 0.005 | – | – | – | – | 0.27 |
K-C4 | 100 | 0.05 | – | – | – | – | 0.27 |
K-C5 | 100 | 0.5 | – | – | – | – | 0.27 |
K-C0-A | 100 | 0 | 0.03 | – | – | – | 0.27 |
K-C1-A | 100 | 0.00005 | 0.03 | – | – | – | 0.27 |
K-C2-A | 100 | 0.0005 | 0.03 | – | – | – | 0.27 |
K-C3-A | 100 | 0.005 | 0.03 | – | – | – | 0.27 |
K-C4-A | 100 | 0.05 | 0.03 | – | – | – | 0.27 |
K-C5-A | 100 | 0.5 | 0.03 | – | – | – | 0.27 |
K-C0-A-LS | 100 | 0 | 0.03 | 0.2 | – | – | 0.27 |
K-C1-A-LS | 100 | 0.00005 | 0.03 | 0.2 | – | – | 0.27 |
K-C2-A-LS | 100 | 0.0005 | 0.03 | 0.2 | – | – | 0.27 |
K-C3-A-LS | 100 | 0.005 | 0.03 | 0.2 | – | – | 0.27 |
K-C4-A-LS | 100 | 0.05 | 0.03 | 0.2 | – | – | 0.27 |
K-C5-A-LS | 100 | 0.5 | 0.03 | 0.2 | – | – | 0.27 |
K-C0-A-PA | 100 | 0 | 0.03 | – | 0.2 | – | 0.27 |
K-C1-A-PA | 100 | 0.00005 | 0.03 | – | 0.2 | – | 0.27 |
K-C2-A-PA | 100 | 0.0005 | 0.03 | – | 0.2 | – | 0.27 |
K-C3-A-PA | 100 | 0.005 | 0.03 | – | 0.2 | – | 0.27 |
K-C4-A-PA | 100 | 0.05 | 0.03 | – | 0.2 | – | 0.27 |
K-C5-A-PA | 100 | 0.5 | 0.03 | – | 0.2 | – | 0.27 |
K-C0-A-PCE | 100 | 0 | 0.03 | – | – | 0.2 | 0.27 |
K-C1-A-PCE | 100 | 0.00005 | 0.03 | – | – | 0.2 | 0.27 |
K-C2-A-PCE | 100 | 0.0005 | 0.03 | – | – | 0.2 | 0.27 |
K-C3-A-PCE | 100 | 0.005 | 0.03 | – | – | 0.2 | 0.27 |
K-C4-A-PCE | 100 | 0.05 | 0.03 | – | – | 0.2 | 0.27 |
K-C5-A-PCE | 100 | 0.5 | 0.03 | – | – | 0.2 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pundienė, I.; Pranckevičienė, J. The Role of MWCNTs in Enhancing the Foam Stability and Rheological Behavior of Cement Pastes That Contain Air-Entraining and Superplasticizer Admixtures. Nanomaterials 2023, 13, 3095. https://doi.org/10.3390/nano13243095
Pundienė I, Pranckevičienė J. The Role of MWCNTs in Enhancing the Foam Stability and Rheological Behavior of Cement Pastes That Contain Air-Entraining and Superplasticizer Admixtures. Nanomaterials. 2023; 13(24):3095. https://doi.org/10.3390/nano13243095
Chicago/Turabian StylePundienė, Ina, and Jolanta Pranckevičienė. 2023. "The Role of MWCNTs in Enhancing the Foam Stability and Rheological Behavior of Cement Pastes That Contain Air-Entraining and Superplasticizer Admixtures" Nanomaterials 13, no. 24: 3095. https://doi.org/10.3390/nano13243095
APA StylePundienė, I., & Pranckevičienė, J. (2023). The Role of MWCNTs in Enhancing the Foam Stability and Rheological Behavior of Cement Pastes That Contain Air-Entraining and Superplasticizer Admixtures. Nanomaterials, 13(24), 3095. https://doi.org/10.3390/nano13243095