Tuning Electromagnetic Parameters Induced by Synergistic Dual-Polarization Enhancement Mechanisms with Amorphous Cobalt Phosphide with Phosphorus Vacancies for Excellent Electromagnetic Wave Dissipation Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Co-MOF Nanorods
2.3. Preparation of Co@C and Co@CoPx@C Composites
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vanskevice, I.; Kazakova, M.A.; Macutkevic, J.; Semikolenova, N.V.; Banys, J. Dielectric Properties of Hybrid Polyethylene Composites Containing Cobalt Nanoparticles and Carbon Nanotubes. Materials 2022, 15, 1876. [Google Scholar] [CrossRef] [PubMed]
- Bleija, M.; Platnieks, O.; Macutkevic, J.; Starkova, O.; Gaidukovs, S. Comparison of Carbon-Nanoparticle-Filled Poly(Butylene Succinate-co-Adipate) Nanocomposites for Electromagnetic Applications. Nanomaterials 2022, 12, 3671. [Google Scholar] [CrossRef] [PubMed]
- Bleija, M.; Platnieks, O.; Macutkevic, J.; Banys, J.; Starkova, O.; Grase, L.; Gaidukovs, S. Poly(Butylene Succinate) Hybrid Multi-Walled Carbon Nanotube/Iron Oxide Nanocomposites: Electromagnetic Shielding and Thermal Properties. Polymers 2023, 15, 515. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Z.; Qi, L.P.; Liao, Q.L.; Kang, Z.; Zhang, Y. Toward the Application of High Frequency Electromagnetic Wave Absorption by Carbon Nanostructures. Adv. Sci. 2019, 6, 1801057. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Yang, H.B.; Lin, Y.; Ma, L.; Qiu, Y.; Hu, F.F.; Zheng, Y.N. Synthesis of Core-Shell Co@S-doped Carbon@ Mesoporous N-Doped Carbon Nanosheets with a Hierarchically Porous Structure for Strong Electromagnetic Wave Absorption. J. Mater. Chem. A 2021, 9, 3567–3575. [Google Scholar] [CrossRef]
- Nan, H.Y.; Luo, F.; Jia, H.Y.; Deng, H.W.; Qing, Y.C.; Huang, Z.B.; Wang, C.H.; Chen, Q. Balancing between Polarization and Conduction Loss toward Strong Electromagnetic Wave Absorption of Hard Carbon Particles with Morphology Heterogeneity. ACS Appl. Mater. Interfaces 2022, 14, 19836–19846. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.B.; Wen, B.; Wang, L. Carbon Nanotubes Modified CoZn/C Composites with Rambutan-like Applied to Electromagnetic Wave Absorption. Appl. Surf. Sci. 2020, 509, 145336. [Google Scholar] [CrossRef]
- Gao, Z.G.; Ma, Z.H.; Lan, D.; Zhao, Z.H.; Zhang, L.M.; Wu, H.J.; Hou, Y.L. Synergistic Polarization Loss of MoS2-Based Multiphase Solid Solution for Electromagnetic Wave Absorption. Adv. Funct. Mater. 2022, 32, 2112294. [Google Scholar] [CrossRef]
- Li, C.; Qi, X.S.; Gong, X.; Peng, Q.; Chen, Y.L.; Xie, R.; Zhong, W. Magnetic-Dielectric Synergy and Interfacial Engineering to Design Yolk-Shell Structured CoNi@void@C and CoNi@void@C@MoS2 Nanocomposites with Tunable and Strong Wideband Microwave Absorption. Nano Res. 2022, 15, 6761–6771. [Google Scholar] [CrossRef]
- Wen, C.Y.; Li, X.; Zhang, R.X.; Xu, C.Y.; You, W.B.; Liu, Z.W.; Zhao, B.; Che, R.C. High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti3C2Tx MXene@Ni Microspheres. ACS Nano 2022, 16, 1150–1159. [Google Scholar] [CrossRef]
- Yin, Y.C.; Liu, X.F.; Wei, X.J.; Yu, R.H.; Shui, J.L. Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. ACS Appl. Mater. Interfaces 2016, 8, 34686–34698. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhao, H.Q.; Lv, H.L.; Shi, T.F.; Ji, G.B.; Hou, Y.L. Lightweight and Flexible Cotton Aerogel Composites for Electromagnetic Absorption and Shielding Applications. Adv. Funct. Mater. 2019, 6, 1900796. [Google Scholar] [CrossRef]
- Wang, S.Y.; Peng, S.S.; Zhong, S.T.; Jiang, W. Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@Air@C Hierarchical Heterostructures for Efficient Electromagnetic Wave Absorption. J. Mater. Chem. C 2018, 6, 9465–9474. [Google Scholar] [CrossRef]
- Zhang, H.X.; Jia, Z.R.; Wang, B.B.; Wu, X.M.; Sun, T.; Liu, X.H.; Bi, L.; Wu, G.L. Construction of Remarkable Electromagnetic Wave Absorber from Heterogeneous Structure of Co-CoFe2O4@Mesoporous Hollow Carbon Spheres. Chem. Eng. J. 2021, 421, 129960. [Google Scholar] [CrossRef]
- Wen, G.S.; Zhao, X.C.; Liu, Y.; Zhang, H.; Wang, C. Facile Synthesis of RGO/Co@Fe@Cu Hollow Nanospheres with Efficient Broadband Electromagnetic Wave Absorption. Chem. Eng. J. 2019, 372, 1–11. [Google Scholar] [CrossRef]
- Xue, W.; Yang, G.; Bi, S.; Zhang, J.Y.; Hou, Z.L. Construction of Caterpillar-Like Hierarchically Structured Co/MnO/CNTs Derived from MnO2/ZIF-8@ZIF-67 for Electromagnetic Wave Absorption. Carbon 2021, 173, 521–527. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, L.B.; Zhao, W.X.; Wang, T.; Yuan, L.Y.; Guo, Y.Y.; Xie, Y.X.; Cheng, T.T.; Meng, A.L.; Li, Z.J. Boosted Electromagnetic Wave Absorption Performance from Synergistic Induced Polarization of SiCNWs@MnO2@PPy Heterostructures. Nano Res. 2023, 16, 3558–3569. [Google Scholar] [CrossRef]
- Liu, J.R.; Itoh, M.; Terada, M.; Horikawa, T.; Machida, K.I. Enhanced Electromagnetic Wave Absorption Properties of Fe Nanowires in Gigaherz Range. Appl. Phys. Lett. 2007, 91, 093101. [Google Scholar] [CrossRef]
- Yang, L.Q.; Wang, Y.; Lu, Z.; Cheng, R.R.; Wang, N.; Li, Y.F. Construction of Multi-Dimensional NiCo/C/CNT/rGO Aerogel by MOF Derivative for Efficient Microwave Absorption. Carbon 2023, 205, 411–421. [Google Scholar] [CrossRef]
- Xie, X.B.; Wang, B.L.; Wang, Y.K.; Ni, C.; Sun, X.Q.; Du, W. Spinel Structured MFe(2)O4 (M = Fe, Co, Ni, Mn, Zn) and Their Composites for Microwave Absorption: A review. Chem. Eng. J. 2021, 428, 131160. [Google Scholar] [CrossRef]
- Wu, Z.C.; Cheng, H.W.; Jin, C.; Yang, B.T.; Xu, C.Y.; Pei, K.; Zhang, H.B.; Yang, Z.Q.; Che, R.C. Dimensional Design and Core-shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. Adv. Mater. 2022, 34, 2107538. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.L.; Lv, H.P.; Zhou, Y.; Zheng, X.T.; Wu, C.; Xu, C. Self-Assembled Sandwich-like MXene-Derived Nanocomposites for Enhanced Electromagnetic Wave Absorption. ACS Appl. Mater. Interfaces 2019, 10, 42925–42932. [Google Scholar] [CrossRef]
- Li, Y.Y.; Gai, L.X.; Song, G.L.; An, Q.D.; Xiao, Z.Y.; Zhai, S.R. Enhanced Properties of CoS2/Cu2S Embedded N/S Co-Doped Mesh-Like Carbonaceous Composites for Electromagnetic Wave Absorption. Carbon 2021, 186, 238–252. [Google Scholar] [CrossRef]
- Hou, T.Q.; Jia, Z.R.; Wang, B.B.; Li, H.B.; Liu, X.H.; Chi, Q.G.; Wu, G.L. Metal-Organic Framework-Derived NiSe2-CoSe2@C/Ti3C2Tx Composites as Electromagnetic Wave Absorbers. Chem. Eng. J. 2021, 422, 130079. [Google Scholar] [CrossRef]
- Sun, R.; Qu, M.X.; Peng, L.; Yang, W.W.; Wang, Z.H.; Bai, Y.; Sun, K.N. Regulating Electrochemical Kinetics of CoP by Incorporating Oxygen on Surface for High-Performance Li-S Batteries. Small 2023, 19, e2302092. [Google Scholar] [CrossRef]
- Ha, D.H.; Han, B.H.; Risch, M.; Giordano, L.; Yao, K.P.C.; Karayaylali, P.; Shao-Horn, Y. Activity and Stability of Cobalt Phosphides for Hydrogen Evolution upon Water Splitting. Nano Energy 2016, 29, 37–45. [Google Scholar] [CrossRef]
- Pradhan, B.; Kumar, G.S.; Dalui, A.; Khan, A.H.; Satpati, B.; Ji, Q.M.; Shrestha, L.K.; Ariga, K.; Acharya, S. Shape-Controlled Cobalt Phosphide Nanoparticles as Volatile Organic Solvent Sensor. J. Mater. Chem. C 2016, 4, 4967–4977. [Google Scholar] [CrossRef]
- Fan, W.; Qu, H.J.; Zhao, Q.L.; Sun, X.; Wang, T.; Yu, X.Y.; Pan, J.J.; He, J.P. Cobalt Phosphide Decorated on Reduced Graphene Oxide with Enhanced Microwave Absorption Performance. J. Alloys Compd. 2022, 925, 166636. [Google Scholar] [CrossRef]
- Wang, R.L.; He, M.; Zhou, Y.M.; Nie, S.X.; Wang, Y.J.; Liu, W.Q.; He, Q.; Wu, W.T.; Bu, X.H.; Yang, X.M. Self-Assembled 3D Flower-like Composites of Heterobimetallic Phosphides and Carbon for Temperature-Tailored Electromagnetic Wave Absorption. ACS Appl. Mater. Interfaces 2019, 11, 38361–38371. [Google Scholar] [CrossRef]
- Ma, L.; Wang, R.; Li, Y.H.; Liu, X.F.; Zhang, Q.Q.; Dong, X.Y.; Zang, S.Q. Apically Co-Nanoparticles-Wrapped Nitrogen-Doped Carbon Nanotubes from a Single-Source MOF for Efficient Oxygen Reduction. J. Mater. Chem. A 2018, 6, 24071–24077. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Wang, H.H.; Cheng, J.Y.; Han, C.Y.; Yang, X.Y.; Xu, J.Y.; Shan, G.C.; Zheng, G.P.; Cao, M.S. Conductive WS2-NS/CNTs Hybrids Based 3D Ultra-Thin Mesh Electromagnetic Wave Absorbers with Excellent Absorption Performance. Appl. Surf. Sci. 2020, 528, 147052. [Google Scholar] [CrossRef]
- Duan, Y.L.; Jiang, B.; Ma, C.; Wang, X.; Wang, Y.B.; Li, R.; Yang, W.; Li, Y.F. Construction of MnO-Skeleton Cross-Linked by Carbon Nanotubes Networks for Efficient Microwave Absorption. J. Colloid Interface Sci. 2021, 602, 778–788. [Google Scholar] [CrossRef]
- Zhuang, G.X.; Chen, Y.W.; Zhuang, Z.Y.; Yu, Y.; Yu, J.G. Oxygen Vacancies in Metal Oxides: Recent Progress towards Advanced Catalyst Design. Sci. China Mater. 2020, 63, 2089–2118. [Google Scholar] [CrossRef]
- Li, Z.N.; Han, X.J.; Ma, Y.; Liu, D.W.; Wang, Y.H.; Xu, P.; Li, C.L.; Du, Y. MOFs-Derived Hollow Co/C Microspheres with Enhanced Microwave Absorption Performance. ACS Sustain. Chem. Eng. 2018, 6, 8904–8913. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.F.; Nie, X.Y.; Yang, W.W.; Wang, Y.D.; Yu, R.H.; Shui, J.L. Multifunctional Organic-Inorganic Hybrid Aerogel for Self-Cleaning, Heat-Insulating, and Highly Efficient Microwave Absorbing Material. Adv. Funct. Mater. 2019, 29, 1807624. [Google Scholar] [CrossRef]
- Yan, H.Y.; Guo, Y.; Bai, X.Z.; Qi, J.W.; Lu, H.P. Facile Constructing Ti3C2Tx/TiO2@C Heterostructures for Excellent Microwave Absorption Properties. J. Colloid Interface Sci. 2023, 654, 1483–1491. [Google Scholar] [CrossRef]
- Liu, T.; Li, P.; Yao, N.; Cheng, G.Z.; Chen, S.L.; Luo, W.; Yin, Y.D. CoP-Doped MOF-Based Electrocatalyst for pH-Universal Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2019, 58, 4679–4684. [Google Scholar] [CrossRef]
- Guan, C.; Xiao, W.; Wu, H.J.; Liu, X.M.; Zang, W.J.; Zhang, H.; Ding, J.; Feng, Y.P.; Pennycook, S.J.; Wang, J. Hollow Mo-doped CoP Nanoarrays for Efficient overall Water Splitting. Nano Energy 2018, 48, 73–80. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Z.F.; Wang, M.M.; Cao, X.; Zhang, Y.; Song, P.; Zhang, T.Y.; Ye, X.L.; Yang, Y.; Gu, W.H.; et al. Confining Tiny MoO2 Clusters into Reduced Graphene Oxide for Highly Efficient Low Frequency Microwave Absorption. Small 2020, 16, 2001686. [Google Scholar] [CrossRef]
- Cui, L.R.; Tian, C.H.; Tang, L.L.; Han, X.J.; Wang, Y.H.; Liu, D.W.; Xu, P.; Li, C.L.; Du, Y.C. Space-Confined Synthesis of Core-shell BaTiO3@Carbon Microspheres as a High-Performance Binary Dielectric System for Microwave Absorption. ACS Appl. Mater. Interfaces 2019, 11, 31182–31190. [Google Scholar] [CrossRef]
- Sun, G.B.; Dong, B.X.; Cao, M.H.; Wei, B.Q.; Hu, C.W. Hierarchical Dendrite-Like Magnetic Materials of Fe3O4, Gamma-Fe2O3, and Fe with High Performance of Microwave Absorption. Chem. Mater. 2011, 23, 1587–1593. [Google Scholar] [CrossRef]
- Lyu, L.F.; Wang, F.L.; Zhang, X.; Qiao, J.; Liu, C.; Liu, J.R. CuNi Alloy/Carbon Foam Nanohybrids as High-Performance Electromagnetic Wave Absorbers. Carbon 2021, 172, 488–496. [Google Scholar] [CrossRef]
- Lv, H.L.; Ji, G.B.; Liang, X.H.; Zhang, H.Q.; Du, Y.W. A Novel Rod-Like MnO2@Fe Loading on Graphene Giving Excellent Electromagnetic Absorption Properties. J. Mater. Chem. C 2015, 3, 5056–5064. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, H.B.; Cheng, Y.; Bai, X.Y.; Wen, B.; Lin, Y. Constructing a Nitrogen-Doped Carbon and Nickel Composite Derived from a Mixed Ligand Nickel-Based a Metal-Organic Framework toward Adjustable Microwave Absorption. Nanoscale 2021, 13, 9204–9216. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Yang, H.B.; Lin, Y.; Qiu, Y.; Cheng, Y.; Jin, L.X. Novel Bimetallic MOF Derived Hierarchical Co@C Composites Modified with Carbon Nanotubes and Its Excellent Electromagnetic Wave Absorption Properties. J. Colloid Interface Sci. 2023, 605, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Zhang, J.T.; Yang, G.R.; Jing, D.W.; Yin, X.C.; Fan, L.; Nasir, M.S.; Ding, S.J. Optimal Electrical Conductivity and Interfacial Polarization Induced by Loaded Nanoparticles on Carbon Nanotubes for Excellent Electromagnetic Wave Absorption Performance. J. Colloid Interface Sci. 2022, 626, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tao, J.Q.; Gao, L.L.; He, X.X.; Wei, B.; Gu, Y.S.; Yao, Z.J.; Zhou, J.T. Morphology-Size Synergy Strategy of SiC@C Nanoparticles towards Lightweight and Efficient Microwave Absorption. Chem. Eng. J. 2022, 433, 134484. [Google Scholar] [CrossRef]
- Qiu, Y.; Lin, Y.; Yang, H.B.; Wang, L.; Wang, M.Q.; Wen, B. Hollow Ni/C Microspheres Derived from Ni-Metal Organic Framework for Electromagnetic Wave Absorption. Chem. Eng. J. 2020, 383, 123207. [Google Scholar] [CrossRef]
- Wen, B.; Yang, H.B.; Lin, Y.; Ma, L.; Qiu, Y.; Hu, F.F. Controlling the Heterogeneous Interfaces of S, Co Co-Doped porous Carbon Nanosheets for Enhancing the Electromagnetic Wave Absorption. J. Colloid Interface Sci. 2021, 586, 208–218. [Google Scholar] [CrossRef]
- Cai, L.; Pan, F.; Zhu, X.J.; Dong, Y.Y.; Shi, Y.Y.; Xiang, Z.; Cheng, J.; Jiang, H.J.; Shi, Z.; Lu, W. Etching Engineering and Electrostatic Self-Assembly of N-Doped MXene/Hollow Co-ZIF Hybrids for High-Performance Microwave Absorbers. Chem. Eng. J. 2022, 434, 133865. [Google Scholar] [CrossRef]
- Zhang, X.C.; Shi, Y.A.; Xu, J.; Ouyang, Q.Y.; Zhang, X.; Zhu, C.L.; Zhang, X.L.; Chen, Y.J. Identification of the Intrinsic Dielectric Properties of Metal Single Atoms for Electromagnetic Wave Absorption. Nano-Micro Lett. 2022, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Yang, G.R.; Zhou, X.Y.; Ding, S.J. Intelligent Diffusion Regulation Induced In-Situ Growth of Cobalt Nanoclusters on Carbon Nanotubes for Excellent Electromagnetic Wave Absorption. J. Colloid Interface Sci. 2023, 634, 74–85. [Google Scholar] [CrossRef] [PubMed]
- He, Y.Y.; Xie, P.Y.; Li, S.; Wang, Y.N.; Liao, D.G.; Liu, H.X.; Zhou, L.; Chen, Y.H. Multifunctional Carbon Foam with Hollow Microspheres and a Concave-Convex Microstructure for Adjustable Electromagnetic Wave Absorption and Wearable Applications. J. Mater. Chem. A 2021, 9, 25982–25998. [Google Scholar] [CrossRef]
- Liang, J.; Chen, J.; Shen, H.Q.; Hu, K.T.; Zhao, B.N.; Kong, J. Hollow Porous Bowl-like Nitrogen-Doped Cobalt/Carbon Nanocomposites with Enhanced Electromagnetic Wave Absorption. Chem. Mater. 2021, 33, 1789–1798. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, B.; Miao, Y.; Zhang, Z.; Li, N.; Xiao, J.; Li, Y.; Feng, J.; Ding, S.; Yang, G. Tuning Electromagnetic Parameters Induced by Synergistic Dual-Polarization Enhancement Mechanisms with Amorphous Cobalt Phosphide with Phosphorus Vacancies for Excellent Electromagnetic Wave Dissipation Performance. Nanomaterials 2023, 13, 3025. https://doi.org/10.3390/nano13233025
Wen B, Miao Y, Zhang Z, Li N, Xiao J, Li Y, Feng J, Ding S, Yang G. Tuning Electromagnetic Parameters Induced by Synergistic Dual-Polarization Enhancement Mechanisms with Amorphous Cobalt Phosphide with Phosphorus Vacancies for Excellent Electromagnetic Wave Dissipation Performance. Nanomaterials. 2023; 13(23):3025. https://doi.org/10.3390/nano13233025
Chicago/Turabian StyleWen, Bo, Yunzi Miao, Zhijie Zhang, Na Li, Jiyuan Xiao, Yushuo Li, Jiangtao Feng, Shujiang Ding, and Guorui Yang. 2023. "Tuning Electromagnetic Parameters Induced by Synergistic Dual-Polarization Enhancement Mechanisms with Amorphous Cobalt Phosphide with Phosphorus Vacancies for Excellent Electromagnetic Wave Dissipation Performance" Nanomaterials 13, no. 23: 3025. https://doi.org/10.3390/nano13233025
APA StyleWen, B., Miao, Y., Zhang, Z., Li, N., Xiao, J., Li, Y., Feng, J., Ding, S., & Yang, G. (2023). Tuning Electromagnetic Parameters Induced by Synergistic Dual-Polarization Enhancement Mechanisms with Amorphous Cobalt Phosphide with Phosphorus Vacancies for Excellent Electromagnetic Wave Dissipation Performance. Nanomaterials, 13(23), 3025. https://doi.org/10.3390/nano13233025