Study on the Pore Structure of Lightweight Mortar with Nano-Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Design and Preparation of the Samples
2.3. Testing Methods
3. Results and Discussion
3.1. Flexural Strength
3.2. Compressive Strength
3.3. Water Absorption
3.4. SEM Analysis
3.5. MIP Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norhasri, M.S.M.; Hamidah, M.S.; Fadzil, A.M. Applications of Using Nano Material in Concrete: A Review. Constr. Build. Mater. 2017, 133, 91–97. [Google Scholar] [CrossRef]
- Sanchez, F.; Sobolev, K. Nanotechnology in Concrete—A Review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Kirkpatrick, R.J. Innovation in Use and Research on Cementitious Material. Cem. Concr. Res. 2008, 38, 128–136. [Google Scholar] [CrossRef]
- Constantinides, G. Nanoscience and Nanoengineering of Cement-Based Materials. In Nanotechnology in Eco-Efficient Construction: Materials, Processes and Applications; Woodhead Publishing: Sawston, UK, 2013. [Google Scholar]
- Yang, H.; Monasterio, M.; Zheng, D.; Cui, H.; Tang, W.; Bao, X.; Chen, X. Effects of Nano Silica on the Properties of Cement-Based Materials: A Comprehensive Review. Constr. Build. Mater. 2021, 282, 122715. [Google Scholar] [CrossRef]
- Ayad, A.; Said, A. Using Colloidal Nano Silica to Enhance the Performance of Cementitious Mortars. Open J. Civ. Eng. 2018, 8, 82–90. [Google Scholar] [CrossRef]
- Balapour, M.; Joshaghani, A.; Althoey, F. Nano-SiO2 Contribution to Mechanical, Durability, Fresh and Microstructural Characteristics of Concrete: A Review. Constr. Build. Mater. 2018, 181, 27–41. [Google Scholar] [CrossRef]
- Liew, K.M.; Kai, M.F.; Zhang, L.W. Carbon Nanotube Reinforced Cementitious Composites: An Overview. Compos. Part A Appl. Sci. Manuf. 2016, 91, 301–323. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M.C. Microstructure and Mechanical Properties of Carbon Nanotube Reinforced Cementitious Composites Developed Using a Novel Dispersion Technique. Cem. Concr. Res. 2015, 73, 215–227. [Google Scholar] [CrossRef]
- Carriço, A.; Bogas, J.A.; Hawreen, A.; Guedes, M. Durability of Multi-Walled Carbon Nanotube Reinforced Concrete. Constr. Build. Mater. 2018, 164, 121–133. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-Sensitive Properties and Microstructure of Carbon Nanotube Reinforced Cement Composites. Cem. Concr. Compos. 2007, 29, 377–382. [Google Scholar] [CrossRef]
- Singh, A.P.; Gupta, B.K.; Mishra, M.; Govind; Chandra, A.; Mathur, R.B.; Dhawan, S.K. Multiwalled Carbon Nanotube/Cement Composites with Exceptional Electromagnetic Interference Shielding Properties. Carbon 2013, 56, 86–96. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Turkmenoglu, H.N.; Atahan, H.N. Deformation Properties of Nano-Silica Modified Concrete Mixtures under Uniaxial Compression Loading. Arab. J. Sci. Eng. 2021, 46, 11009–11025. [Google Scholar] [CrossRef]
- Shih, J.Y.; Chang, T.P.; Hsiao, T.C. Effect of Nanosilica on Characterization of Portland Cement Composite. Mater. Sci. Eng. A 2006, 424, 266–274. [Google Scholar] [CrossRef]
- Lavergne, F.; Belhadi, R.; Carriat, J.; Ben Fraj, A. Effect of Nano-Silica Particles on the Hydration, the Rheology and the Strength Development of a Blended Cement Paste. Cem. Concr. Compos. 2019, 95, 42–55. [Google Scholar] [CrossRef]
- Asgari, H.; Ramezanianpour, A.; Butt, H.J. Effect of Water and Nano-Silica Solution on the Early Stages Cement Hydration. Constr. Build. Mater. 2016, 129, 11–24. [Google Scholar] [CrossRef]
- Li, W.; Long, C.; Tam, V.W.Y.; Poon, C.S.; Hui Duan, W. Effects of Nano-Particles on Failure Process and Microstructural Properties of Recycled Aggregate Concrete. Constr. Build. Mater. 2017, 142, 42–50. [Google Scholar] [CrossRef]
- Tarangini, D.; Sravana, P.; Srinivasa Rao, P. Effect of Nano Silica on Frost Resistance of Pervious Concrete. Mater. Today Proc. 2022, 51, 2185–2189. [Google Scholar] [CrossRef]
- Alqamish, H.H.; Al-Tamimi, A.K. Development and Evaluation of Nano-Silica Sustainable Concrete. Appl. Sci. 2021, 11, 3041. [Google Scholar] [CrossRef]
- Wang, J.; Liu, M.; Wang, Y.; Zhou, Z.; Xu, D.; Du, P.; Cheng, X. Synergistic Effects of Nano-Silica and Fly Ash on Properties of Cement-Based Composites. Constr. Build. Mater. 2020, 262, 120737. [Google Scholar] [CrossRef]
- Liu, H.; Jin, J.; Yu, Y.; Liu, H.; Liu, S.; Shen, J.; Xia, X.; Ji, H. Influence of Halloysite Nanotube on Hydration Products and Mechanical Properties of Oil Well Cement Slurries with Nano-Silica. Constr. Build. Mater. 2020, 247, 118545. [Google Scholar] [CrossRef]
- Rostami, M.R.; Abbassi-Sourki, F.; Bouhendi, H. Synergistic Effect of Branched Polymer/Nano Silica on the Microstructures of Cement Paste and Their Rheological Behaviors. Constr. Build. Mater. 2019, 201, 159–170. [Google Scholar] [CrossRef]
- Gupta, M.; Kumar, M. Effect of Nano Silica and Coir Fiber on Compressive Strength and Abrasion Resistance of Concrete. Constr. Build. Mater. 2019, 226, 44–50. [Google Scholar] [CrossRef]
- Mowlaei, R.; Lin, J.; Basquiroto de Souza, F.; Fouladi, A.; Habibnejad Korayem, A.; Shamsaei, E.; Duan, W. The Effects of Graphene Oxide-Silica Nanohybrids on the Workability, Hydration, and Mechanical Properties of Portland Cement Paste. Constr. Build. Mater. 2021, 266, 121016. [Google Scholar] [CrossRef]
- Song, S.; Niu, Y.; Zhong, X. Study on Dynamic Mechanical Properties of Carbon Nanotubes Reinforced Concrete Subjected to Freeze–Thaw Cycles. Struct. Concr. 2022, 23, 3221–3233. [Google Scholar] [CrossRef]
- Safari Tarbozagh, A.; Rezaifar, O.; Gholhaki, M.; Abavisani, I. Magnetic Enhancement of Carbon Nanotube Concrete Compressive Behavior. Constr. Build. Mater. 2020, 262, 120772. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, H. Mechanical Properties and Failure Mechanism of Carbon Nanotube Concrete at High Temperatures. Constr. Build. Mater. 2021, 297, 123782. [Google Scholar] [CrossRef]
- Mohammadyan-Yasouj, S.E.; Ghaderi, A. Experimental Investigation of Waste Glass Powder, Basalt Fibre, and Carbon Nanotube on the Mechanical Properties of Concrete. Constr. Build. Mater. 2020, 252, 119115. [Google Scholar] [CrossRef]
- Fu, Q.; Zhou, Z.; Wang, Z.; Huang, J.; Niu, D. Insight into Dynamic Compressive Response of Carbon Nanotube/Carbon Fiber-Reinforced Concrete. Cem. Concr. Compos. 2022, 129, 104471. [Google Scholar] [CrossRef]
- Chaipanich, A.; Rianyoi, R.; Nochaiya, T. The Effect of Carbon Nanotubes and Silica Fume on Compressive Strength and Flexural Strength of Cement Mortars. Mater. Today Proc. 2017, 4, 6065–6071. [Google Scholar] [CrossRef]
- Du, Y.; Yang, J.; Skariah Thomas, B.; Li, L.; Li, H.; Nazar, S. Hybrid Graphene Oxide/Carbon Nanotubes Reinforced Cement Paste: An Investigation on Hybrid Ratio. Constr. Build. Mater. 2020, 261, 119815. [Google Scholar] [CrossRef]
- Xi, B.; Zhou, Y.; Yu, K.; Hu, B.; Huang, X.; Sui, L.; Xing, F. Use of Nano-SiO2 to Develop a High Performance Green Lightweight Engineered Cementitious Composites Containing Fly Ash Cenospheres. J. Clean. Prod. 2020, 262, 121274. [Google Scholar] [CrossRef]
- Hanif, A.; Parthasarathy, P.; Ma, H.; Fan, T.; Li, Z. Properties Improvement of Fly Ash Cenosphere Modified Cement Pastes Using Nano Silica. Cem. Concr. Compos. 2017, 81, 35–48. [Google Scholar] [CrossRef]
- Najeeb, Z.; Mosaberpanah, M.A. Mechanical and Durability Properties of Modified High-Performance Mortar by Using Cenospheres and Nano-Silica. Constr. Build. Mater. 2023, 362, 129782. [Google Scholar] [CrossRef]
- Liu, H.; Elchalakani, M.; Yehia, S.; Leong, Y.K.; Du, P. The Synergic Effect of Polyethylene Fibres and CNT on the Properties of Ultralightweight Cementitious Composites. Dev. Built Environ. 2023, 14, 100134. [Google Scholar] [CrossRef]
- EN 197-1:2011; Cement—Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2011.
- Nazari, A.; Riahi, S. Microstructural, Thermal, Physical and Mechanical Behavior of the Self Compacting Concrete Containing SiO2 Nanoparticles. Mater. Sci. Eng. A 2010, 527, 7663–7672. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Ou, J. ping Abrasion Resistance of Concrete Containing Nano-Particles for Pavement. Wear 2006, 260, 1262–1266. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Taha, R.; Abu Taqa, A.; Shaat, A. Optimum Carbon Nanotubes’ Content for Improving Flexural and Compressive Strength of Cement Paste. Constr. Build. Mater. 2017, 150, 395–403. [Google Scholar] [CrossRef]
- Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical Behavior and Microstructure of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Nanotubes. Carbon. 2005, 43, 1239–1245. [Google Scholar] [CrossRef]
- EN 206-1:2002; Concrete—Specification, Performance, Production and Conformity. National Standards Authority of Ireland: Dublin, Ireland, 2002.
- Collins, F.; Lambert, J.; Duan, W.H. The Influences of Admixtures on the Dispersion, Workability, and Strength of Carbon Nanotube-OPC Paste Mixtures. Cem. Concr. Compos. 2012, 34, 201–207. [Google Scholar] [CrossRef]
- Baloch, W.L.; Khushnood, R.A.; Khaliq, W. Influence of Multi-Walled Carbon Nanotubes on the Residual Performance of Concrete Exposed to High Temperatures. Constr. Build. Mater. 2018, 185, 44–56. [Google Scholar] [CrossRef]
- Sedaghatdoost, A.; Behfarnia, K. Mechanical Properties of Portland Cement Mortar Containing Multi-Walled Carbon Nanotubes at Elevated Temperatures. Constr. Build. Mater. 2018, 176, 482–489. [Google Scholar] [CrossRef]
- Zhou, C.; Li, F.; Hu, J.; Ren, M.; Wei, J.; Yu, Q. Enhanced Mechanical Properties of Cement Paste by Hybrid Graphene Oxide/Carbon Nanotubes. Constr. Build. Mater. 2017, 134, 336–345. [Google Scholar] [CrossRef]
- Beigi, M.H.; Berenjian, J.; Lotfi Omran, O.; Sadeghi Nik, A.; Nikbin, I.M. An Experimental Survey on Combined Effects of Fibers and Nanosilica on the Mechanical, Rheological, and Durability Properties of Self-Compacting Concrete. Mater. Des. 2013, 50, 1019–1029. [Google Scholar] [CrossRef]
- Ghazy, A.; Bassuoni, M.T.; Shalaby, A. Nano-Modified Fly Ash Concrete: A Repair Option for Concrete Pavements. ACI Mater. J. 2016, 113, 231–242. [Google Scholar] [CrossRef]
- Silvestro, L.; Jean Paul Gleize, P. Effect of Carbon Nanotubes on Compressive, Flexural and Tensile Strengths of Portland Cement-Based Materials: A Systematic Literature Review. Constr. Build. Mater. 2020, 264, 120237. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, J.; Li, G.; Zhang, M.; Leung, C.K.Y. Corrosion Behavior of Steel Rebar Embedded in Hybrid CNTs-OH/Polyvinyl Alcohol Modified Concrete under Accelerated Chloride Attack. Cem. Concr. Compos. 2019, 100, 120–129. [Google Scholar] [CrossRef]
- Karakouzian, M.; Farhangi, V.; Farani, M.R.; Joshaghani, A.; Zadehmohamad, M.; Ahmadzadeh, M. Mechanical Characteristics of Cement Paste in the Presence of Carbon Nanotubes and Silica Oxide Nanoparticles: An Experimental Study. Materials 2021, 14, 1347. [Google Scholar] [CrossRef]
- Pachideh, G.; Gholhaki, M. Effect of Pozzolanic Materials on Mechanical Properties and Water Absorption of Autoclaved Aerated Concrete. J. Build. Eng. 2019, 26, 100856. [Google Scholar] [CrossRef]
- Zhang, R.; Panesar, D.K. Water Absorption of Carbonated Reactive MgO Concrete and Its Correlation with the Pore Structure. J. CO2 Util. 2018, 24, 350–360. [Google Scholar] [CrossRef]
- Danish, A.; Mosaberpanah, M.A.; Tuladhar, R.; Salim, M.U.; Yaqub, M.A.; Ahmad, N. Effect of Cenospheres on the Engineering Properties of Lightweight Cementitious Composites: A Comprehensive Review. J. Build. Eng. 2022, 49, 104016. [Google Scholar] [CrossRef]
- Gao, F.; Tian, W.; Wang, Z.; Wang, F. Effect of Diameter of Multi-Walled Carbon Nanotubes on Mechanical Properties and Microstructure of the Cement-Based Materials. Constr. Build. Mater. 2020, 260, 120452. [Google Scholar] [CrossRef]
- Shen, J.; Xu, Q. Characteristics of Pore Structure Change and Compressive Strength Reduction of Concrete Under Elevated Temperatures. Mater. Rep. 2020, 34, 2046–2051. [Google Scholar] [CrossRef]
Parameters | PC | FAC |
---|---|---|
Initial setting time (min) | ≥60 | - |
Size (micron) | - | 40–300 |
Sulfate content (%) | ≤3.5 | - |
Chloride content (%) | ≤0.1 | - |
Bulk density (g/cm3) | 0.9–1.5 | 0.37–0.40 |
2-day compressive strength (MPa) | ≥10.0 | - |
28-day compressive strength (MPa) | 42.5–62.5 | 20–40 |
Specimen | PC (kg) | Water (kg) | FAC (kg) | SP (kg) | MWCNTs (kg) | NS (kg) | MWCNTs (%) | NS (%) |
---|---|---|---|---|---|---|---|---|
Control | 527.34 | 295.31 | 386.72 | - | - | - | 0 | - |
CNT0.05 | 527.34 | 295.31 | 386.72 | 2.66 | 0.27 | - | 0.05 | - |
CNT0.15 | 527.34 | 295.31 | 386.72 | 2.66 | 0.78 | - | 0.15 | - |
CNT0.45 | 527.34 | 295.31 | 386.72 | 2.66 | 2.38 | - | 0.45 | - |
CNT0.05NS0.2 | 527.34 | 295.31 | 386.72 | 2.66 | 0.27 | 1.05 | 0.05 | 0.2 |
CNT0.15NS0.2 | 527.34 | 295.31 | 386.72 | 2.66 | 0.78 | 1.05 | 0.15 | 0.2 |
CNT0.45NS0.2 | 527.34 | 295.31 | 386.72 | 2.66 | 2.38 | 1.05 | 0.45 | 0.2 |
CNT0.05NS1.0 | 527.34 | 295.31 | 386.72 | 2.66 | 0.27 | 5.27 | 0.05 | 1.0 |
CNT0.15NS1.0 | 527.34 | 295.31 | 386.72 | 2.66 | 0.78 | 5.27 | 0.15 | 1.0 |
CNT0.45NS1.0 | 527.34 | 295.31 | 386.72 | 2.66 | 2.38 | 5.27 | 0.45 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Pundienė, I.; Pranckevičienė, J.; Zujevs, A.; Korjakins, A. Study on the Pore Structure of Lightweight Mortar with Nano-Additives. Nanomaterials 2023, 13, 2942. https://doi.org/10.3390/nano13222942
Du Y, Pundienė I, Pranckevičienė J, Zujevs A, Korjakins A. Study on the Pore Structure of Lightweight Mortar with Nano-Additives. Nanomaterials. 2023; 13(22):2942. https://doi.org/10.3390/nano13222942
Chicago/Turabian StyleDu, Yiying, Ina Pundienė, Jolanta Pranckevičienė, Aleksejs Zujevs, and Aleksandrs Korjakins. 2023. "Study on the Pore Structure of Lightweight Mortar with Nano-Additives" Nanomaterials 13, no. 22: 2942. https://doi.org/10.3390/nano13222942
APA StyleDu, Y., Pundienė, I., Pranckevičienė, J., Zujevs, A., & Korjakins, A. (2023). Study on the Pore Structure of Lightweight Mortar with Nano-Additives. Nanomaterials, 13(22), 2942. https://doi.org/10.3390/nano13222942