Movements of Magnetite-Encapsulated Graphene Particles at Air–Water Interface and Their Cell Growths under Dynamic Magnetic Field
Abstract
:1. Introduction
2. Theoretical Background
3. Experimental Methods
3.1. Materials
3.2. Setup of the Apparatus
3.3. Cell Growths and Cell Viability Assays
4. Results and Discussion
4.1. Parameters of Motion Control System and Instrument
4.2. Movement of Magnetic Graphene Particles
4.3. Mechanisms of the Rotational Motion of Magnetic Graphene Particles
4.3.1. A Short Magnetic Graphene Particle
4.3.2. An Elongated Magnetic Graphene Particle
4.3.3. A Curved Magnetic Graphene Particle
4.4. Effects of Magnetic Graphene Nanoparticles on Cell Growth
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, X.; Tao, H.; Yang, K.; Feng, L.; Cheng, L.; Shi, X.; Li, Y.; Guo, L.; Liu, Z. A Functionalized Graphene Oxide-Iron Oxide Nanocomposite for Magnetically Targeted Drug Delivery, Photothermal Therapy, and Magnetic Resonance Imaging. Nano Res. 2012, 5, 199–212. [Google Scholar] [CrossRef]
- Bruce, I.J.; Sen, I.T. Surface Modification of Magnetic Nanoparticles with Alkoxysilanes and Their Application in Magnetic Bioseparations. Langmuir 2005, 21, 7029–7035. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-H.; Hsieh, H.-L.; Viswanathan, G.; Voon, S.H.; Kue, C.S.; Saw, W.S.; Yeong, C.H.; Azlan, C.A.; Imae, T.; Kiew, L.V.; et al. Multifunctional Carbon-Coated Magnetic Sensing Graphene Oxide-Cyclodextrin Nanohybrid for Potential Cancer Theranosis. J. Nanoparticle Res. 2017, 19, 359. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, L.; Liu, P.; Wang, S.; Sun, B.; Jiang, D.; Xiao, F. Magnetically Motive Porous Sphere Composite and Its Excellent Properties for the Removal of Pollutants in Water by Adsorption and Desorption Cycles. Adv. Mater. 2006, 18, 1968–1971. [Google Scholar] [CrossRef]
- Guo, J.; Wang, R.; Tjiu, W.W.; Pan, J. Synthesis of Fe Nanoparticles@ Graphene Composites for Environmental Applications. J. Hazard. Mater. 2012, 225, 63–73. [Google Scholar] [CrossRef]
- Wang, C.; Luo, H.; Zhang, Z.; Wu, Y.; Zhang, J.; Chen, S. Removal of As(III) and As(V) from Aqueous Solutions Using Nanoscale Zero Valent Iron-Reduced Graphite Oxide Modified Composites. J. Hazard. Mater. 2014, 268, 124–131. [Google Scholar] [CrossRef]
- Ahmed, M.M.M.; Imae, T. Electrochemical Properties of a Thermally Expanded Magnetic Graphene Composite with a Conductive Polymer. Phys. Chem. Chem. Phys. 2016, 18, 10400–10410. [Google Scholar] [CrossRef]
- Yu, B.; Zhang, X.; Xie, J.; Wu, R.; Liu, X.; Li, H.; Chen, F.; Yang, H.; Ming, Z.; Yang, S.-T. Magnetic Graphene Sponge for the Removal of Methylene Blue. Appl. Surf. Sci. 2015, 351, 765–771. [Google Scholar] [CrossRef]
- Ujihara, M.; Ahmed, M.M.M.; Imae, T.; Yamauchi, Y. Massive-Exfoliation of Magnetic Graphene from Acceptor-Type Gic by Long-Chain Alkyl Amine. J. Mater. Chem. A 2014, 2, 4244–4250. [Google Scholar] [CrossRef]
- Cheng, Z.; Liao, J.; He, B.; Zhang, F.; Zhang, F.; Huang, X.; Zhou, L. Engineering, One-Step Fabrication of Graphene Oxide Enhanced Magnetic Composite Gel for Highly Efficient Dye Adsorption and Catalysis. ACS Sustain. Chem. Eng. 2015, 3, 1677–1685. [Google Scholar] [CrossRef]
- Li, B.; Cao, H.; Shao, J.; Qu, M.; Warner, J. Superparamagnetic Fe3O4 Nanocrystals@ Graphene Composites for Energy Storage Devices. J. Mater. Chem. 2011, 21, 5069–5075. [Google Scholar] [CrossRef]
- Sandeep, N. Effect of Aligned Magnetic Field on Liquid Thin Film Flow of Magnetic-Nanofluids Embedded with Graphene Nanoparticles. Adv. Powder Technol. 2017, 28, 865–875. [Google Scholar] [CrossRef]
- Xu, T.; Yu, J.; Yan, X.; Choi, H.; Zhang, L. Magnetic Actuation Based Motion Control for Microrobots: An Overview. Micromachines 2015, 6, 1346–1364. [Google Scholar] [CrossRef]
- Peyer, K.E.; Tottori, S.; Qiu, F.; Zhang, L.; Nelson, B.J. Magnetic Helical Micromachines. Chem. Eur. J. 2013, 19, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, K.; Roy, P.E.; Felton, S.; Pihl, J.; Svedlindh, P.; Berner, S.; Lidbaum, H.; Oscarsson, S. Programmable Motion and Separation of Single Magnetic Particles on Patterned Magnetic Surfaces. Adv. Mater. 2005, 17, 1730–1734. [Google Scholar] [CrossRef]
- Long, Z.; Shetty, A.M.; Solomon, M.J.; Larson, R.G. Fundamentals of Magnet-Actuated Droplet Manipulation on an Open Hydrophobic Surface. Lab Chip 2009, 9, 1567–1575. [Google Scholar] [CrossRef]
- Ambashta, R.D.; Sillanpää, M. Water Purification Using Magnetic Assistance: A Review. J. Hazard. Mater. 2010, 180, 38–49. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Chang, F.-Y.; Tu, S.-J.; Chen, J.-P.; Ma, Y.-H. Cellular Uptake of Magnetite Nanoparticles Enhanced by Ndfeb Magnets in Staggered Arrangement. J. Magn. Magn. Mater. 2017, 427, 71–80. [Google Scholar] [CrossRef]
- Liu, H.; Pan, L.-M.; Huang, H.; Qin, Q.; Li, P.; Wen, J. Hydrogen Bubble Growth at Micro-Electrode under Magnetic Field. J. Electroanal. Chem. 2015, 754, 22–29. [Google Scholar] [CrossRef]
- Matsushima, H.; Iida, T.; Fukunaka, Y. Gas Bubble Evolution on Transparent Electrode During Water Electrolysis in a Magnetic Field. Electrochim. Acta 2013, 100, 261–264. [Google Scholar] [CrossRef]
- Ramanujan, R.V. Magnetic Particles for Biomedical Applications. In Biomedical Materials; Narayan, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 477–491. [Google Scholar]
- Rikken, R.S.; Nolte, R.J.; Maan, J.C.; van Hest, J.C.; Wilson, D.A.; Christianen, P.C. Manipulation of Micro-and Nanostructure Motion with Magnetic Fields. Soft Matter 2014, 10, 1295–1308. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Fischer, P. Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Lett. 2009, 9, 2243–2245. [Google Scholar] [CrossRef] [PubMed]
- Dkhil, M.; Kharboutly, M.; Bolopion, A.; Régnier, S.; Gauthier, M. Closed-Loop Control of a Magnetic Particle at the Air–Liquid Interface. T-ASE 2015, 14, 1387–1399. [Google Scholar] [CrossRef]
- Pawashe, C.; Floyd, S.; Diller, E.; Sitti, M. Two-Dimensional Autonomous Microparticle Manipulation Strategies for Magnetic Microrobots in Fluidic Environments. IEEE Trans. Robot. 2011, 28, 467–477. [Google Scholar] [CrossRef]
- Gerber, R. Magnetic Filtration of Ultra-Fine Particles. IEEE Trans. Magn. 1984, 20, 1159–1164. [Google Scholar] [CrossRef]
- Furlani, E. Analysis of Particle Transport in a Magnetophoretic Microsystem. J. Appl. Phys. 2006, 99, 024912. [Google Scholar] [CrossRef]
- Schaller, V.; Kräling, U.; Rusu, C.; Petersson, K.; Wipenmyr, J.; Krozer, A.; Wahnström, G.; Sanz-Velasco, A.; Enoksson, P.; Johansson, C. Motion of Nanometer Sized Magnetic Particles in a Magnetic Field Gradient. J. Appl. Phys. 2008, 104, 093918. [Google Scholar] [CrossRef]
- Jiles, D. Introduction to Magnetism and Magnetic Materials; CRC Press: Boca Raton, FL, USA, 2015; p. 13. ISBN 978-1-4822-3888-4. [Google Scholar]
- Teo, B.M.; Young, D.J.; Loh, X.J. Magnetic Anisotropic Particles: Toward Remotely Actuated Applications. Part. Part. Syst. Charact. 2016, 33, 709–728. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Tanimoto, Y. Magneto-Science: Magnetic Field Effects on Materials: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2006; Volume 48, pp. 3433–3436. [Google Scholar]
- Sakaguchi, A.; Hamasaki, A.; Ozeki, S. Colloid and Interface Chemistry under Magnetic Fields. Chem. Lett. 2012, 41, 342–348. [Google Scholar] [CrossRef]
- Nakata, S.; Iguchi, Y.; Ose, S.; Kuboyama, M.; Ishii, T.; Yoshikawa, K. Self-Rotation of a Camphor Scraping on Water: New Insight into the Old Problem. Langmuir 1997, 13, 4454–4458. [Google Scholar] [CrossRef]
- Hrkac, G.; Bryan, M.T.; Butler, K. Magnetic vortex oscillators. J. Phys. D Appl. Phys. 2015, 48, 453001. [Google Scholar] [CrossRef]
- Goiriena-Goikoetxea, M.; García-Arribas, A.; Rouco, M.; Svalov, A.V.; Barandiaran, J.M. High-yield fabrication of 60 nm Permalloy nanodiscs in well-defined magnetic vortex state for biomedical applications. Nanotechnology 2016, 27, 175302. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Nakamura, F. Mechanotransduction, nanotechnology, and nanomedicine. J. Biomed. Res. 2021, 35, 284. [Google Scholar] [CrossRef] [PubMed]
- Ciasca, G.; Papi, M.; Minelli, E.; Palmieri, V.; De Spirito, M. Changes in cellular mechanical properties during onset or progression of colorectal cancer. World J. Gastroenterol. 2016, 22, 7203. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.; Soleymani, H.; Hashemzadeh, H.; Mortezazadeh, S.; Sedghi, M.; Shojaeilangari, S.; Naderi-Manesh, H. Microfluidic investigation of the effect of graphene oxide on mechanical properties of cell and actin cytoskeleton networks: Experimental and theoretical approaches. Sci. Rep. 2021, 11, 16216. [Google Scholar] [CrossRef] [PubMed]
- Moerland, C.P.; van IJzendoorn, L.J.; Prins, M.W.J. Rotating magnetic particles for lab-on-chip applications—A comprehensive review. Lab Chip 2019, 19, 919–933. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.J.; Fite, M.C.; Imae, T.; Lee, P.F. Movements of Magnetite-Encapsulated Graphene Particles at Air–Water Interface and Their Cell Growths under Dynamic Magnetic Field. Nanomaterials 2023, 13, 2806. https://doi.org/10.3390/nano13202806
Lee JJ, Fite MC, Imae T, Lee PF. Movements of Magnetite-Encapsulated Graphene Particles at Air–Water Interface and Their Cell Growths under Dynamic Magnetic Field. Nanomaterials. 2023; 13(20):2806. https://doi.org/10.3390/nano13202806
Chicago/Turabian StyleLee, Jia Ji, Misganu Chewaka Fite, Toyoko Imae, and Poh Foong Lee. 2023. "Movements of Magnetite-Encapsulated Graphene Particles at Air–Water Interface and Their Cell Growths under Dynamic Magnetic Field" Nanomaterials 13, no. 20: 2806. https://doi.org/10.3390/nano13202806
APA StyleLee, J. J., Fite, M. C., Imae, T., & Lee, P. F. (2023). Movements of Magnetite-Encapsulated Graphene Particles at Air–Water Interface and Their Cell Growths under Dynamic Magnetic Field. Nanomaterials, 13(20), 2806. https://doi.org/10.3390/nano13202806