Cyclic Buckling Characterization of an Individual MWCNT Using Quantitative In Situ TEM Axial Compression
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.D.; et al. All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-Bit RF Tag on Plastic Foils. IEEE Trans. Electron Devices 2010, 57, 571–580. [Google Scholar] [CrossRef]
- Cao, Q.; Kim, H.; Pimparkar, N.; Kulkarni, J.P.; Wang, C.; Shim, M.; Roy, K.; Alam, M.A.; Rogers, J.A. Medium-Scale Carbon Nanotube Thin-Film Integrated Circuits on Flexible Plastic Substrates. Nature 2008, 454, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Vosguerichian, M.; Bao, Z. A Review of Fabrication and Applications of Carbon Nanotube Film-Based Flexible Electronics. Nanoscale 2013, 5, 1727–1752. [Google Scholar] [CrossRef]
- Hu, L.; Hecht, D.S.; Grüner, G. Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chem. Rev. 2010, 110, 5790–5844. [Google Scholar] [CrossRef]
- Popov, V.N. Carbon Nanotubes: Properties and Application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Dresselhaus, G.; Dresselhaus, M.S.; Saito, R. Physical Properties of Carbon Nanotubes; World Scientific: Singapore, 1998; ISBN 1783262419. [Google Scholar] [CrossRef]
- Terrones, M.; Terrones, H.; Dresselhaus, M.S.; Dresselhaus, G.; Charlier, J.C.; Hernández, E. Electronic, Thermal and Mechanical Properties of Carbon Nanotubes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2065–2098. [Google Scholar] [CrossRef]
- Jensen, K.; Weldon, J.; Garcia, H.; Zettl, A. Nanotube Radio. Nano Lett. 2007, 7, 3508–3511. [Google Scholar] [CrossRef] [PubMed]
- Akita, S.; Nakayama, Y.; Mizooka, S.; Takano, Y.; Okawa, T.; Miyatake, Y.; Yamanaka, S.; Tsuji, M.; Nosaka, T. Nanotweezers Consisting of Carbon Nanotubes Operating in an Atomic Force Microscope. Appl. Phys. Lett. 2001, 79, 1691–1693. [Google Scholar] [CrossRef]
- Kim, P.; Lieber, C.M. Nanotube Nanotweezers. Science 1999, 286, 2148–2150. [Google Scholar] [CrossRef]
- Kaul, A.B.; Khan, A.R.; Megerian, K.G.; Epp, L.; LeDuc, H.G.; Bagge, L.; Jennings, A.T.; Jang, D.; Greer, J.R. Carbon-Based Nano-Electro-Mechanical Systems. Micro-Nanotechnol. Sens. Syst. Appl. II 2010, 7679, 178–189. [Google Scholar] [CrossRef]
- Axelsson, S.; Campbell, E.E.B.; Jonsson, L.M.; Kinaret, J.; Lee, S.W.; Park, Y.W.; Sveningsson, M. Theoretical and Experimental Investigations of Three-Terminal Carbon Nanotube Relays. New J. Phys. 2005, 7, 245. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, D.S.; Morjan, R.E.; Jhang, S.H.; Sveningsson, M.; Nerushev, O.A.; Park, Y.W.; Campbell, E.E.B. A Three-Terminal Carbon Nanorelay. Nano Lett. 2004, 4, 2027–2030. [Google Scholar] [CrossRef]
- Lassagne, B.; Tarakanov, Y.; Kinaret, J.; Garcia-Sanchez, D.; Bachtold, A. Coupling Mechanics to Charge Transport in Carbon Nanotube Mechanical Resonators. Science 2009, 325, 1107–1110. [Google Scholar] [CrossRef]
- Sazonova, V.; Yaish, Y.; Üstünel, H.; Roundy, D.; Arias, T.A.; McEuen, P.L. A Tunable Carbon Nanotube Electromechanical Oscillator. Nature 2004, 431, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Cui, J.; Lu, H.; Yua, J.; Liu, Y.; Li, H.; Jiang, N. In Situ Nanomechanical Research on Large-Scale Plastic Deformation of Individual Ultrathin Multi-Walled Carbon Nanotube. Chin. J. Chem. Phys. 2019, 32, 485–490. [Google Scholar] [CrossRef]
- Tsai, P.C.; Jeng, Y.R.; Huang, Y.X.; Wu, K. Te Buckling Characterizations of an Individual Multi-Walled Carbon Nanotube: Insights from Quantitative in Situ Transmission Electron Microscope Nanoindentation and Molecular Dynamics. Appl. Phys. Lett. 2013, 103, 053119. [Google Scholar] [CrossRef]
- Shima, H. Buckling of Carbon Nanotubes: A State of the Art Review. Materials 2012, 5, 47–84. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; He, M.R.; Dai, S.; Huang, J.Q.; Wei, F.; Zhu, J. TEM Observations of Buckling and Fracture Modes for Compressed Thick Multiwall Carbon Nanotubes. Carbon N. Y. 2011, 49, 206–213. [Google Scholar] [CrossRef]
- Jensen, K.; Mickelson, W.; Kis, A.; Zettl, A. Buckling and Kinking Force Measurements on Individual Multiwalled Carbon Nanotubes. Phys. Rev. B 2007, 76, 195436. [Google Scholar] [CrossRef]
- Pantano, A.; Parks, D.M.; Boyce, M.C. Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes. J. Mech. Phys. Solids 2004, 52, 789–821. [Google Scholar] [CrossRef]
- Timoshenko, S.P.; Gere, J.M. Theory of Elastic Stability, 2nd ed.; Dover Publications: New York, NY, USA, 2009; ISBN 0486472078. [Google Scholar]
- Poncharal, P.; Wang, Z.L.; Ugarte, D.; De Heer, W.A. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science 1999, 283, 1513–1516. [Google Scholar] [CrossRef]
- Arroyo, M.; Belytschko, T. Nonlinear Mechanical Response and Rippling of Thick Multiwalled Carbon Nanotubes. Phys. Rev. Lett. 2003, 91, 215505. [Google Scholar] [CrossRef]
- Jackman, H.; Krakhmalev, P.; Svensson, K. Mechanical Behavior of Carbon Nanotubes in the Rippled and Buckled Phase. J. Appl. Phys. 2015, 117, 084318. [Google Scholar] [CrossRef]
- Wang, C.M.; Zhang, Y.Y.; Xiang, Y.; Reddy, J.N. Recent Studies on Buckling of Carbon Nanotubes. Appl. Mech. Rev. 2010, 63, 030804. [Google Scholar] [CrossRef]
- Rochefort, A.; Avouris, P.; Lesage, F.; Salahub, D.R. Electrical and Mechanical Properties of Distorted Carbon Nanotubes. Phys. Rev. B 1999, 60, 13824–13830. [Google Scholar] [CrossRef]
- Farajian, A.A.; Yakobson, B.I.; Mizuseki, H.; Kawazoe, Y. Electronic Transport through Bent Carbon Nanotubes: Nanoelectromechanical Sensors and Switches. Phys. Rev. B 2003, 67, 205423. [Google Scholar] [CrossRef]
- Silvestre, N. Length Dependence of Critical Measures in Single-Walled Carbon Nanotubes. Int. J. Solids Struct. 2008, 45, 4902–4920. [Google Scholar] [CrossRef]
- He, X.Q.; Kitipornchai, S.; Liew, K.M. Buckling Analysis of Multi-Walled Carbon Nanotubes: A Continuum Model Accounting for van Der Waals Interaction. J. Mech. Phys. Solids 2005, 53, 303–326. [Google Scholar] [CrossRef]
- Pantano, A.; Boyce, M.C.; Parks, D.M. Nonlinear Structural Mechanics Based Modeling of Carbon Nanotube Deformation. Phys. Rev. Lett. 2003, 91, 145504. [Google Scholar] [CrossRef]
- Li, C.; Chou, T.-W. Modeling of Elastic Buckling of Carbon Nanotubes by Molecular Structural Mechanics Approach. Mech. Mater. 2004, 36, 1047–1055. [Google Scholar] [CrossRef]
- Chang, T.; Li, G.; Guo, X. Elastic Axial Buckling of Carbon Nanotubes via a Molecular Mechanics Model. Carbon N. Y. 2005, 43, 287–294. [Google Scholar] [CrossRef]
- Chang, T.; Guo, W.; Guo, X. Buckling of Multiwalled Carbon Nanotubes under Axial Compression and Bending via a Molecular Mechanics Model. Phys. Rev. B 2005, 72, 64101. [Google Scholar] [CrossRef]
- Schaper, A.K.; Wang, M.S.; Xu, Z.; Bando, Y.; Golberg, D. Comparative Studies on the Electrical and Mechanical Behavior of Catalytically Grown Multiwalled Carbon Nanotubes and Scrolled Graphene. Nano Lett. 2011, 11, 3295–3300. [Google Scholar] [CrossRef]
- Kulik, A.J.; Kis, A.; Lukic, B.; Lee, K.; Forró, L. Mechanical Properties of Carbon Nanotubes BT-Fundamentals of Friction and Wear; Gnecco, E., Meyer, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 583–600. ISBN 978-3-540-36807-6. [Google Scholar]
- Salvetat, J.-P.; Bonard, J.-M.; Thomson, N.H.; Kulik, A.J.; Forró, L.; Benoit, W.; Zuppiroli, L. Mechanical Properties of Carbon Nanotubes. Appl. Phys. A 1999, 69, 255–260. [Google Scholar] [CrossRef]
- Jia, Z.; Kou, K.; Qin, M.; Wu, H.; Puleo, F.; Liotta, L.F. Controllable and Large-Scale Synthesis of Carbon Nanostructures: A Review on Bamboo-like Nanotubes. Catalysts 2017, 7, 256. [Google Scholar] [CrossRef]
- Elumeeva, K.V.; Kuznetsov, V.L.; Ischenko, A.V.; Smajda, R.; Spina, M.; Forró, L.; Magrez, A. Reinforcement of CVD Grown Multi-Walled Carbon Nanotubes by High Temperature Annealing. AIP Adv. 2013, 3, 112101. [Google Scholar] [CrossRef]
- Harpak, N.; Davidi, G.; Melamed, Y.; Cohen, A.; Patolsky, F. Self-Catalyzed Vertically Aligned Carbon Nanotube-Silicon Core-Shell Array for Highly Stable, High-Capacity Lithium-Ion Batteries. Langmuir 2020, 36, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Sorin Cojocaru, C.; Kim, D.; Pribat, D.; Bourée, J.-E. Synthesis of Multi-Walled Carbon Nanotubes by Combining Hot-Wire and Dc Plasma-Enhanced Chemical Vapor Deposition. Thin Solid Film. 2006, 501, 227–232. [Google Scholar] [CrossRef]
- Samira, R.; Vakahi, A.; Eliasy, R.; Sherman, D.; Lachman, N. Mechanical and Compositional Implications of Gallium Ion Milling on Epoxy Resin. Polymers 2021, 13, 2640. [Google Scholar] [CrossRef]
- Liu, J.; Niu, R.; Gu, J.; Cabral, M.; Song, M.; Liao, X. Effect of Ion Irradiation Introduced by Focused Ion-Beam Milling on the Mechanical Behaviour of Sub-Micron-Sized Samples. Sci. Rep. 2020, 10, 10324. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Charlier, J.-C. Defects in Carbon Nanotubes. Acc. Chem. Res. 2002, 35, 1063–1069. [Google Scholar] [CrossRef]
- Sammalkorpi, M.; Krasheninnikov, A.; Kuronen, A.; Nordlund, K.; Kaski, K. Mechanical Properties of Carbon Nanotubes with Vacancies and Related Defects. Phys. Rev. B 2004, 70, 245416. [Google Scholar] [CrossRef]
- Zhou, O.; Fleming, R.M.; Murphy, D.W.; Chen, C.H.; Haddon, R.C.; Ramirez, A.P.; Glarum, S.H. Defects in Carbon Nanostructures. Science 1994, 263, 1744–1747. [Google Scholar] [CrossRef] [PubMed]
- Hysitron, PI 95 TEM PicoIndenter User Manual; Book, revision 9.2.1211; Bruker: Minneapolis, MN, USA, 2016; pp. 1–82. Available online: https://bhamem.files.wordpress.com/2014/07/pi-95-tem-picoindenter-jeol-user-manual.pdf (accessed on 1 December 2022).
- Falvo, M.R.; Clary, G.J.; Taylor, R.M.; Chi, V.; Brooks, F.P.; Washburn, S.; Superfine, R. Bending and Buckling of Carbon Nanotubes under Large Strain. Nature 1997, 389, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Lourie, O.; Cox, D.M.; Wagner, H.D. Buckling and Collapse of Embedded Carbon Nanotubes. Phys. Rev. Lett. 1998, 81, 1638–1641. [Google Scholar] [CrossRef]
- Jackman, H.; Krakhmalev, P.; Svensson, K. Large Variations in the Onset of Rippling in Concentric Nanotubes. Appl. Phys. Lett. 2014, 104, 21910. [Google Scholar] [CrossRef]
- Ugarte, D. Curling and Closure of Graphitic Networks under Electron-Beam Irradiation. Nature 1992, 359, 707–709. [Google Scholar] [CrossRef]
- Xia, Z.H.; Guduru, P.R.; Curtin, W.A. Enhancing Mechanical Properties of Multiwall Carbon Nanotubes via Sp 3 Interwall Bridging. Phys. Rev. Lett. 2007, 98, 245501. [Google Scholar] [CrossRef]
- Peng, B.; Locascio, M.; Zapol, P.; Li, S.; Mielke, S.L.; Schatz, G.C.; Espinosa, H.D. Measurements of Near-Ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-Induced Crosslinking Improvements. Nat. Nanotechnol. 2008, 3, 626–631. [Google Scholar] [CrossRef]
- Byrne, E.M.; McCarthy, M.A.; Xia, Z.; Curtin, W.A. Multiwall Nanotubes Can Be Stronger than Single Wall Nanotubes and Implications for Nanocomposite Design. Phys. Rev. Lett. 2009, 103, 045502. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Wang, C.M.; Xiang, Y. Bending Behavior of Double-Walled Carbon Nanotubes with Sp3 Interwall Bonds. J. Appl. Phys. 2011, 109, 083516. [Google Scholar] [CrossRef]
- Shen, G.A.; Namilae, S.; Chandra, N. Load Transfer Issues in the Tensile and Compressive Behavior of Multiwall Carbon Nanotubes. Mater. Sci. Eng. A 2006, 429, 66–73. [Google Scholar] [CrossRef]
- Fonseca, A.F.; Borders, T.; Baughman, R.H.; Cho, K. Load Transfer between Cross-Linked Walls of a Carbon Nanotube. Phys. Rev. B-Condens. Matter Mater. Phys. 2010, 81, 045429. [Google Scholar] [CrossRef]
- Andrew, M. Minor, In Situ Nanoindentation in a Transmission Electron Microscope. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2002. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samira, R.; Cohen, A.; Patolsky, F.; Lachman, N. Cyclic Buckling Characterization of an Individual MWCNT Using Quantitative In Situ TEM Axial Compression. Nanomaterials 2023, 13, 301. https://doi.org/10.3390/nano13020301
Samira R, Cohen A, Patolsky F, Lachman N. Cyclic Buckling Characterization of an Individual MWCNT Using Quantitative In Situ TEM Axial Compression. Nanomaterials. 2023; 13(2):301. https://doi.org/10.3390/nano13020301
Chicago/Turabian StyleSamira, Raz, Adam Cohen, Fernando Patolsky, and Noa Lachman. 2023. "Cyclic Buckling Characterization of an Individual MWCNT Using Quantitative In Situ TEM Axial Compression" Nanomaterials 13, no. 2: 301. https://doi.org/10.3390/nano13020301
APA StyleSamira, R., Cohen, A., Patolsky, F., & Lachman, N. (2023). Cyclic Buckling Characterization of an Individual MWCNT Using Quantitative In Situ TEM Axial Compression. Nanomaterials, 13(2), 301. https://doi.org/10.3390/nano13020301