A Broadband Photodetector Based on PbS Quantum Dots and Graphene with High Responsivity and Detectivity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Synthesis and Characterization of PbS QDs
3.2. The Preparation of the Photodetector Based on PbS QDs and Graphene
3.3. The Performance of the Photodetector Based on PbS QDs and Graphene
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pham, H.N.; Tong, M.H.; Huynh, H.Q.; Phan, H.D.; Tran, C.K.; Phan, B.T.; Dang, V. The Enhancement of Visible Photodetector Performance based on Mn doped ZnO Nanorods by Substrate Architecting. Sens. Actuators A Phys. 2020, 311, 112085. [Google Scholar] [CrossRef]
- Tao, S.Z.; Yang, D.Z.; He, G.; Guo, D.C.; Yang, L.Q.; Zheng, J.B.; Li, J.; Chen, J.S.; Ma, D.G. Photomultiplication-type perovskite photodetectors base on air-processed perovskite films. Org. Electron. 2023, 118, 106800. [Google Scholar] [CrossRef]
- Liu, R.H.; Zhou, H.; Wang, R.; Wu, D.J.; Pan, X.Y.; Pan, G.D.; Wang, H. Space-confined growth of high-quality CsBi3I10 lead-free perovskite film for near-infrared photodetectors with high sensitivity and stability. Sci. China-Mater. 2021, 64, 393–399. [Google Scholar] [CrossRef]
- Mahabadi, S.E.J.; Wang, S.K.; Carruthers, T.F.; Menyuk, C.R.; Quinlan, F.J.; Hutchinson, M.N.; McKinney, J.D.; Williams, K.J. Calculation of the impulse response and phase noise of a high-current photodetector using the drift-diffusion equations. Opt. Express 2019, 27, 3717–3730. [Google Scholar] [CrossRef]
- Mukherjee, R.; Konar, S. Electromagnetically induced transparency based quantum well infrared photodetectors. J. Lumin. 2022, 251, 119176. [Google Scholar] [CrossRef]
- Ding, J.; Mu, S.Y.; Xiang, W.D.; Ding, N.; Xu, W.; Liang, X.J. Eu3+ doped CsPbCl2Br1 nanocrystals glass for enhanced the ultraviolet response of Si photodetectors. J. Lumin. 2022, 254, 119530. [Google Scholar] [CrossRef]
- Yıldırım, F.; Khalili, S.; Orhan, Z.; Chenari, H.M.; Aydogan, S. Highly sensitive self-powered UV-visible photodetector based on ZrO2-RGO nanofibers/n-Si heterojunction. J. Alloy. Compd. 2023, 935, 168054. [Google Scholar] [CrossRef]
- Reddy, K.S.; Veeralingam, S.; Borse, P.H.; Badhulika, S. High responsivity self-powered flexible broadband photodetector based on hybrid Selenium-PEDOT:PSS junction. Org. Electron. 2022, 108, 106586. [Google Scholar] [CrossRef]
- Razeghi, M.; Dehzangi, A.; Wu, D.H.; McClintock, R.; Zhang, Y.Y.; Durlin, Q.; Li, J.K.; Meng, F.F. Antimonite-based gap-engineered Type-II Superlattice materials, grown by MBE, and MOCVD, for the Third Generation of infrared imagers. In Proceedings of the Conference on Infrared Technology and Applications XLV, Baltimore, MD, USA, 14–18 April 2019. [Google Scholar]
- Wang, P.; Wang, Y.M.; Wu, M.Z.; Ye, Z.H. A junction-level optoelectronic characterization of etching-induced damage for third-generation HgCdTe infrared focal-plane array photodetectors. Infrared Phys. Technol. 2018, 91, 119–122. [Google Scholar] [CrossRef]
- García de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef] [Green Version]
- Satoh, N.; Nakashima, T.; Kamikura, K.; Yamamoto, K. Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nat. Nanotechnol. 2008, 3, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.B.; Yang, S.Y.A.; Liu, Z.F.; Li, H.L.; Zhou, G. H Anisotropic Quantum Confinement Effect and Electric Control of Surface States in Dirac Semimetal Nanostructures. Sci. Rep. 2015, 5, 7898. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.K.; Zhao, X.M.; Yin, P.G.; Gao, F.M. Size-Dependent Raman Shifts for nanocrystals. Sci. Rep. 2016, 6, 20539. [Google Scholar] [CrossRef] [PubMed]
- Butkus, J.; Vashishtha, P.; Chen, K.; Gallaher, J.K.; Prasad, S.K.K.; Metin, D.Z.; Laufersky, G.; Gaston, N.; Halpert, J.E.; Hodgkiss, J.M. The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals. Chem. Mater. 2017, 29, 3644–3652. [Google Scholar] [CrossRef]
- Kramer, I.J.; Sargent, E.H. Colloidal Quantum Dot Photovoltaics: A Path Forward. ACS Nano 2011, 5, 8506–8514. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Y.; Tang, J.; Tang, W.H. Surface ligands engineering of semiconductor quantum dots for chemosensory and biological applications. Mater. Today 2017, 20, 360–376. [Google Scholar] [CrossRef]
- Yang, Z.W.; Gao, M.Y.; Wu, W.J.; Yang, X.Y.; Sun, X.W.; Zhang, J.H.; Wang, H.C.; Liu, R.S.; Han, C.Y.; Yang, H.; et al. Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Mater. Today 2019, 24, 69–93. [Google Scholar] [CrossRef]
- Hassan, M.; Gomes, V.G.; Dehghani, A.; Ardekani, S.M. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018, 11, 1–41. [Google Scholar] [CrossRef]
- Han, K.; Im, W.B.; Heo, J.; Chung, W.J. Compositional dependency of Cd-S-Se quantum dots within silicate glass on color conversion for a white LED. J. Am. Ceram. Soc. 2019, 102, 1703–1709. [Google Scholar] [CrossRef]
- Ra, A.; Edison, T.N.J.I.; Perumal, S.; Selvam, N.C.S.; Lee, Y.R. Green synthesized multiple fluorescent nitrogen-doped carbon quantum dots as an efficient label-free optical nanoprobe for in vivo live-cell imaging. J. Photochem. Photobiol. A Chem. 2019, 372, 99–107. [Google Scholar]
- Liu, H.; Li, M.; Shao, G.; Zhang, W.K.; Wang, W.W.; Song, H.B.; Cao, H.F.; Ma, W.L.; Tang, J. Enhancement of hydrogen sulfide gas sensing of PbS colloidal quantum dots by remote doping through ligand exchange. Sens. Actuators B Chem. 2015, 212, 434–439. [Google Scholar] [CrossRef]
- Mashford, B.S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z.Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; CoeSullivan, S. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photonics 2013, 7, 407–412. [Google Scholar] [CrossRef]
- Stephen, V.; Susha, A.S.; Rogach, A.L. Narrow bandgap colloidal metal chalcogenide quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem. Soc. Rev. 2013, 42, 3033–3087. [Google Scholar]
- Liu, L.; Pan, K.l.; Xu, K.; Zhang, J.Z. Impact of Molecular Ligands in the Synthesis and Transformation between Metal Halide Perovskite Quantum Dots and Magic Sized Clusters. ACS Phys. Chem. Au 2022, 2, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Aqoma, H.; Al Mubarok, M.; Hadmojo, W.T.; Lee, E.H.; Kim, T.W.; Ahn, T.K.; Oh, S.H.; Jang, S.Y. High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange. Adv. Mater. 2017, 29, 1605756. [Google Scholar] [CrossRef] [PubMed]
- Ka, I.; Gerlein, L.F.; Asuo, I.M.; Nechache, R.; Cloutier, S.G. Ultra-broadband perovskite-PbS quantum dot sensitized carbon nanotube photodetector. Nanoscale 2018, 10, 9044–9052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preske, A.; Liu, J.; Prezhdo, O.V.; Krauss, T.D. Large-Scale Programmable Synthesis of PbS Quantum Dots. ChemPhysChem 2016, 17, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Waclawik, E.R. Colloidal semiconductor nanocrystals: Controlled synthesis and surface chemistry in organic media. RSC Adv. 2014, 4, 23505–23527. [Google Scholar] [CrossRef] [Green Version]
- Mamiyev, Z.Q.; Balayeva, N.O. Preparation and optical studies of PbS nanoparticles. Opt. Mater. 2015, 46, 522–525. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z.Z.; Xu, K.; Tsang, H.K.; Xu, J.B. High-responsivity graphene/silicon-heterostructure waveguide photodetector. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Liu, C.H.; Chang, Y.C.; Norris, T.B.; Zhong, Z.H. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Yin, Y.L.; Yu, L.H.; Shi, Y.C.; Liang, D.; Dai, D.X. Silicon-graphene conductive photodetector with ultra-high responsivit. Sci. Rep. 2017, 7, 40904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanover, D.; Vaxenburg, R.; Tilchin, J.; Rubin-Brusilovski, A.; Zaiats, G.; Capek, R.K.; Sashchiuk, A.; Lifshitz, E. Significance of Small-Sized PbSe/PbS Core/Shell Colloidal Quantum Dots for Optoelectronic Applications. J. Phys. Chem. C 2014, 118, 17001–17009. [Google Scholar] [CrossRef]
- Zherebetskyy, D.; Scheele, M.; Zhang, Y.J.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L.W. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 2014, 344, 1380–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamiyev, Z.; Balayeva, N.O. PbS nanostructures: A review of recent advances. Mater. Today Sustain. 2023, 21, 100305. [Google Scholar] [CrossRef]
- Lu, H.P.; Joy, J.; Gaspar, R.L.; Bradforth, S.E.; Brutchey, R.L. Iodide-Passivated Colloidal PbS Nanocrystals Leading to Highly Efficient Polymer:Nanocrystal Hybrid Solar Cells. Chem. Mater. 2016, 28, 1897–1906. [Google Scholar] [CrossRef]
- Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K.S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.H.; Debnath, R.; Cha, D.K. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771. [Google Scholar] [CrossRef]
- Brown, P.R.; Kim, D.; Lunt, R.R.; Zhao, N.; Bawendi, M.G.; Grossman, J.C.; Bulovic, V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. Acs Nano 2014, 8, 5863–5872. [Google Scholar] [CrossRef]
- Pham, H.T.; Jeong, H.D. Newly Observed Temperature and Surface Ligand Dependence of Electron Mobility in Indium Oxide Nanocrystals Solids. Acs Appl. Mater. Interfaces 2015, 7, 11660–11667. [Google Scholar] [CrossRef]
- Vinayakumar, V.; Shaji, S.; Avellaneda, D.; Aguilar-Martinez, J.A.; Krishnan, B. Copper antimony sulfide thin films for visible to near infrared photodetector applications. RSC Adv. 2018, 8, 31055–31065. [Google Scholar] [CrossRef]
- Ren, Z.W.; Sun, J.K.; Li, H.; Mao, P.; Wei, Y.Z.; Zhong, X.H.; Hu, J.S.; Yang, S.Y.; Wang, J.Z. Bilayer PbS Quantum Dots for High-Performance Photodetectors. Adv. Mater. 2017, 29, 1702055. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.Z.; Ren, Z.W.; Zhang, A.D.; Mao, P.; Li, H.; Zhong, X.H.; Li, W.W.; Yang, S.Y.; Wang, J.Z. Hybrid Organic/PbS Quantum Dot Bilayer Photodetector with Low Dark Current and High Detectivity. Adv. Funct. Mater. 2018, 28, 1706690. [Google Scholar] [CrossRef]
- Hwang, D.K.; Lee, Y.T.; Lee, H.S.; Lee, Y.J.; Shokouh, S.H.; Kyhm, J.H.; Lee, J.; Kim, H.H.; Yoo, T.H.; Nam, S.H. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Mater. 2016, 8, e233. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Shultz, A.; Liu, B.; Gong, M.G.; Alamri, M.; Walsh, M.; Schmitz, R.C.; Wu, J.Z. Development of Broadband PbS Quantum Dot/Graphene Photodetector Arrays with High-Speed Readout Circuits for Flexible Imagers. ACS Appl. Nano Mater. 2022, 5, 16896–16905. [Google Scholar] [CrossRef]
- Jeong, H.; Song, J.H.; Jeong, S.; Chang, W.S. Graphene/PbS quantum dot hybrid structure for application in near-infrared photodetectors. Sci. Rep. 2020, 10, 12475. [Google Scholar] [CrossRef]
- Zheng, Z.; Gan, L.; Zhang, J.B.; Zhuge, F.W.; Zhai, T.Y. An Enhanced UV–Vis–NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure. Adv. Sci. 2017, 4, 1600316. [Google Scholar] [CrossRef]
- Yang, B.; Zhao, Y.; Chen, J. High sensitivity graphene-Al2O3 passivated InGaAs near-infrared photodetector. Nanotechnology 2021, 32, 455503. [Google Scholar] [CrossRef]
- Lu, Y.H.; Feng, S.R.; Wu, Z.Q.; Gao, Y.X.; Yang, J.L.; Zhang, Y.J.; Hao, Z.Z.; Li, J.F.; Li, E.P.; Chen, H.S. Broadband surface plasmon resonance enhanced self-powered graphene/GaAs photodetector with ultrahigh detectivity. Nano Energy 2018, 47, 140–149. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J. High performance near-infrared photodetector based on PbS quantum dots and graphene. Sens. Actuators A Phys. 2022, 339, 113508. [Google Scholar] [CrossRef]
- Yang, C.; Feng, S.L.; Tang, L.L.; Shen, J.; Wei, X.Z.; Shi, H.F. Electrochemical Epitaxial Grown PbS Nanorods Array on Graphene Film for High-Performance Photodetector. Adv. Mater. Interfaces 2021, 8, 2001464. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.T.; Song, X.X.; Zhang, H.T.; Cao, M.X.; Che, Y.L.; Dai, H.T.; Yang, J.B.; Zhang, H.; Yao, J.Q. PbS-Decorated WS2 Phototransistors with Fast Response. ACS Photonics 2017, 4, 950–956. [Google Scholar] [CrossRef]
Wavelength (nm) | Responsivity (mA/W) | Detectivity (Jones) | References |
---|---|---|---|
UV–VIS–NIR | 51 | 3.4 × 108 | [48] |
1064 | 4.17 | 5.85 × 109 | [49] |
980 | 2.3 | 3.31 × 1010 | [50] |
808 | 145 | 9.66 × 1010 | [51] |
2700 | 10.4 × 103 | 2.98 × 109 | [52] |
808 | 14 × 103 | 3.9 × 108 | [53] |
VIS–NIR | 202 × 103 | 2.24 × 1011 | This research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Chen, R.; Zhu, Z.; Cheng, C.; Ning, X.; Huang, B. A Broadband Photodetector Based on PbS Quantum Dots and Graphene with High Responsivity and Detectivity. Nanomaterials 2023, 13, 1996. https://doi.org/10.3390/nano13131996
Luo M, Chen R, Zhu Z, Cheng C, Ning X, Huang B. A Broadband Photodetector Based on PbS Quantum Dots and Graphene with High Responsivity and Detectivity. Nanomaterials. 2023; 13(13):1996. https://doi.org/10.3390/nano13131996
Chicago/Turabian StyleLuo, Mutan, Run Chen, Zhaowei Zhu, Chuantong Cheng, Xin Ning, and Beiju Huang. 2023. "A Broadband Photodetector Based on PbS Quantum Dots and Graphene with High Responsivity and Detectivity" Nanomaterials 13, no. 13: 1996. https://doi.org/10.3390/nano13131996
APA StyleLuo, M., Chen, R., Zhu, Z., Cheng, C., Ning, X., & Huang, B. (2023). A Broadband Photodetector Based on PbS Quantum Dots and Graphene with High Responsivity and Detectivity. Nanomaterials, 13(13), 1996. https://doi.org/10.3390/nano13131996