Plasma-Induced Surface Modification of Sapphire and Its Influence on Graphene Grown by Plasma-Enhanced Chemical Vapour Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Cleaning
2.2. Surface Modification of Sapphire: Design of Experiments
2.3. PECVD Growth of Graphene
2.4. Raman Spectroscopy
2.5. Contact Angle Measurements
3. Results and Discussion
3.1. Surface Modification of Sapphire: DoE Results
3.2. Raman Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Comment on the arXiv Version
References
- Mishra, N.; Forti, S.; Fabbri, F.; Martini, L.; McAleese, C.; Conran, B.R.; Whelan, P.R.; Shivayogimath, A.; Jessen, B.S.; Buß, L.; et al. Wafer-Scale Synthesis of Graphene on Sapphire: Toward Fab-Compatible Graphene. Small 2019, 15, 1904906. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xie, C.; Wang, W.; Zhao, J.; Liu, B.; Shan, J.; Wang, X.; Hong, M.; Lin, L.; Huang, L.; et al. Direct Growth of Wafer-Scale Highly Oriented Graphene on Sapphire. Sci. Adv. 2021, 7, eabk0115. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, Y.; Priydarshi, M.K.R.; Chen, Z.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Song, X.; Gao, Y.; Rümmeli, M.H.; et al. Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications. Nano Lett. 2015, 15, 5846–5854. [Google Scholar] [CrossRef]
- Fanton, M.A.; Robinson, J.A.; Puls, C.; Liu, Y.; Hollander, M.J.; Weiland, B.E.; LaBella, M.; Trumbull, K.; Kasarda, R.; Howsare, C.; et al. Characterization of Graphene Films and Transistors Grown on Sapphire by Metal-Free Chemical Vapor Deposition. ACS Nano 2011, 5, 8062–8069. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-Y.; Su, C.-F.; Lee, S.-C.; Lin, S.-Y. The Growth Mechanisms of Graphene Directly on Sapphire Substrates by Using the Chemical Vapor Deposition. J. Appl. Phys. 2014, 115, 223510. [Google Scholar] [CrossRef] [Green Version]
- Song, H.J.; Son, M.; Park, C.; Lim, H.; Levendorf, M.P.; Tsen, A.W.; Park, J.; Choi, H.C. Large Scale Metal-Free Synthesis of Graphene on Sapphire and Transfer-Free Device Fabrication. Nanoscale 2012, 4, 3050. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-J.; Tsai, P.-C.; Su, W.-Y.; Huang, C.-Y.; Lee, P.-T.; Lin, S.-Y. Layered Graphene Growth Directly on Sapphire Substrates for Applications. ACS Omega 2022, 7, 13128–13133. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, Y.; Cao, B.; Qi, L.; Zhao, E.; Yang, S.; Wang, C.; Wang, J.; Zhang, G.; Xu, K. The Interface of Epitaxial Nanographene on GaN by PECVD. AIP Adv. 2019, 9, 095060. [Google Scholar] [CrossRef]
- Li, N.; Zhen, Z.; Zhang, R.; Xu, Z.; Zheng, Z.; He, L. Nucleation and Growth Dynamics of Graphene Grown by Radio Frequency Plasma-Enhanced Chemical Vapor Deposition. Sci. Rep. 2021, 11, 6007. [Google Scholar] [CrossRef]
- Wei, D.; Lu, Y.; Han, C.; Niu, T.; Chen, W.; Wee, A.T.S. Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angew. Chem. Int. Ed. 2013, 52, 14121–14126. [Google Scholar] [CrossRef]
- Liu, D.; Yang, W.; Zhang, L.; Zhang, J.; Meng, J.; Yang, R.; Zhang, G.; Shi, D. Two-Step Growth of Graphene with Separate Controlling Nucleation and Edge Growth Directly on SiO2 Substrates. Carbon 2014, 72, 387–392. [Google Scholar] [CrossRef]
- Lützenkirchen, J.; Franks, G.V.; Plaschke, M.; Zimmermann, R.; Heberling, F.; Abdelmonem, A.; Darbha, G.K.; Schild, D.; Filby, A.; Eng, P.; et al. The Surface Chemistry of Sapphire-c: A Literature Review and a Study on Various Factors Influencing Its IEP. Adv. Colloid. Interface Sci. 2018, 251, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Sumiya, M.; Fuke, S. Effect of Treatments of Sapphire Substrate on Growth of GaN Film. Appl. Surf. Sci. 2005, 244, 269–272. [Google Scholar] [CrossRef]
- Ying, M.; Du, X.; Mei, Z.; Zeng, Z.; Zheng, H.; Wang, Y.; Jia, J.; Xue, Q. Effect of Sapphire Substrate Nitridation on the Elimination of Rotation Domains in ZnO Epitaxial Films. J. Phys. D Appl. Phys. 2004, 37, 3424. [Google Scholar] [CrossRef] [Green Version]
- Neretina, S.; Hughes, R.A.; Britten, J.F.; Sochinskii, N.V.; Preston, J.S.; Mascher, P. The Role of Substrate Surface Termination in the Deposition of (111) CdTe on (0001) Sapphire. Appl. Phys. A 2009, 96, 429–433. [Google Scholar] [CrossRef]
- Cuccureddu, F.; Murphy, S.; Shvets, I.V.; Porcu, M.; Zandbergen, H.W.; Sidorov, N.S.; Bozhko, S.I. Surface Morphology of C-Plane Sapphire (α-Alumina) Produced by High Temperature Anneal. Surf. Sci. 2010, 604, 1294–1299. [Google Scholar] [CrossRef]
- Guenard, P.; Renaud, G.; Barbier, A.; Gautier-Soyer, M. Determination Of The α-Al2O3 (0001) Surface Relaxation and Termination by Measurements of Crystal Truncation Rods. MRS Proc. 1996, 437, 15. [Google Scholar] [CrossRef]
- Blonski, S.; Garofalini, S.H. Molecular Dynamics Simulations of α-Alumina and γ-Alumina Surfaces. Surf. Sci. 1993, 295, 263–274. [Google Scholar] [CrossRef]
- Wang, X.-G.; Chaka, A.; Scheffler, M. Effect of the Environment on α-Al2O3 (0001) Surface Structures. Phys. Rev. Lett. 2000, 84, 3650–3653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eng, P.J.; Trainor, T.P.; Brown, G.E., Jr.; Waychunas, G.A.; Newville, M.; Sutton, S.R.; Rivers, M.L. Structure of the Hydrated α-Al2O3 (0001) Surface. Science 2000, 288, 1029–1033. [Google Scholar] [CrossRef]
- French, T.M.; Somorjai, G.A. Composition and Surface Structure of the (0001) Face of α-Alumina by Low-Energy Electron Diffraction. J. Phys. Chem. 1970, 74, 2489–2495. [Google Scholar] [CrossRef]
- Isono, T.; Ikeda, T.; Aoki, R.; Yamazaki, K.; Ogino, T. Structural- and Chemical-Phase-Separation on Single Crystalline Sapphire (0001) Surfaces. Surf. Sci. 2010, 604, 2055–2063. [Google Scholar] [CrossRef]
- Saito, K.; Ogino, T. Direct Growth of Graphene Films on Sapphire (0001) and (11) Surfaces by Self-Catalytic Chemical Vapor Deposition. J. Phys. Chem. C 2014, 118, 5523–5529. [Google Scholar] [CrossRef]
- Ueda, Y.; Yamada, J.; Ono, T.; Maruyama, T.; Naritsuka, S. Crystal Orientation Effects of Sapphire Substrate on Graphene Direct Growth by Metal Catalyst-Free Low-Pressure CVD. Appl. Phys. Lett. 2019, 115, 013103. [Google Scholar] [CrossRef]
- Li, J.; Chen, M.; Samad, A.; Dong, H.; Ray, A.; Zhang, J.; Jiang, X.; Schwingenschlögl, U.; Domke, J.; Chen, C.; et al. Wafer-Scale Single-Crystal Monolayer Graphene Grown on Sapphire Substrate. Nat. Mater. 2022, 21, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Ahn, C.; Ahn, J.-G.; Kim, J.H.; Jung, J.; Oh, J.; Ryu, S.; Kim, S.; Kim, S.C.; Kim, T.; et al. Critical Role of Surface Termination of Sapphire Substrates in Crystallographic Epitaxial Growth of MoS2 Using Inorganic Molecular Precursors. ACS Nano 2023, 17, 1196–1205. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, Y.-C.; Lee, W.-J. Reactive Ion Etching Mechanism of Plasma Enhanced Chemically Vapor Deposited Aluminum Oxide Film in CF4/O2 Plasma. J. Appl. Phys. 1998, 78, 2045. [Google Scholar] [CrossRef]
- Hsu, Y.P.; Chang, S.J.; Su, Y.K.; Sheu, J.K.; Kuo, C.H.; Chang, C.S.; Shei, S.C. ICP Etching of Sapphire Substrates. Opt. Mater. 2005, 27, 1171–1174. [Google Scholar] [CrossRef]
- Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005; ISBN 0-471-71813-0. [Google Scholar]
- Baek, S.-J.; Park, A.; Ahn, Y.-J.; Choo, J. Baseline Correction Using Asymmetrically Reweighted Penalized Least Squares Smoothing. Analyst 2014, 140, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-Wetting Characterization Using Contact-Angle Measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Krasowska, M.; Sedev, R.; Ralston, J. The Unusual Surface Chemistry of α-Al2O3 (0001). Phys. Chem. Chem. Phys. 2010, 12, 13724. [Google Scholar] [CrossRef] [PubMed]
- Hass, K.C.; Schneider, W.F.; Curioni, A.; Andreoni, W. The Chemistry of Water on Alumina Surfaces: Reaction Dynamics from First Principles. Science 1998, 282, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Ranea, V.A.; Carmichael, I.; Schneider, W.F. DFT Investigation of Intermediate Steps in the Hydrolysis of α-Al2O3 (0001). J. Phys. Chem. C 2009, 113, 2149–2158. [Google Scholar] [CrossRef]
- Wang, G.-G.; Lin, Z.-Q.; Zhao, D.-D.; Han, J.-C. Enhanced Transmission and Self-Cleaning of Patterned Sapphire Substrates Prepared by Wet Chemical Etching Using Silica Masks. Langmuir 2018, 34, 8898–8903. [Google Scholar] [CrossRef]
- Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A.V.; Yavari, F.; Shi, Y.; Ajayan, P.M.; Koratkar, N.A. Wetting Transparency of Graphene. Nat. Mater. 2012, 11, 217–222. [Google Scholar] [CrossRef]
- Prydatko, A.V.; Belyaeva, L.A.; Jiang, L.; Lima, L.M.C.; Schneider, G.F. Contact Angle Measurement of Free-Standing Square-Millimeter Single-Layer Graphene. Nat. Commun. 2018, 9, 4185. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Basko, D.M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotech 2013, 8, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Casiraghi, C.; Pisana, S.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C. Raman Fingerprint of Charged Impurities in Graphene. Appl. Phys. Lett. 2007, 91, 233108. [Google Scholar] [CrossRef] [Green Version]
- Liland, K.H.; Kohler, A.; Afseth, N.K. Model-Based Pre-Processing in Raman Spectroscopy of Biological Samples. J. Raman Spectrosc. 2016, 47, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [Green Version]
- Gustavo Cançado, L.; Gomes da Silva, M.; Martins Ferreira, E.H.; Hof, F.; Kampioti, K.; Huang, K.; Pénicaud, A.; Alberto Achete, C.; Capaz, R.B.; Jorio, A. Disentangling Contributions of Point and Line Defects in the Raman Spectra of Graphene-Related Materials. 2D Mater. 2017, 4, 025039. [Google Scholar] [CrossRef]
- Cançado, L.G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y.A.; Mizusaki, H.; Jorio, A.; Coelho, L.N.; Magalhães-Paniago, R.; Pimenta, M.A. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Barth, C.; Reichling, M. Imaging the Atomic Arrangements on the High-Temperature Reconstructed α-Al2O3 (0001) Surface. Nature 2001, 414, 54–57. [Google Scholar] [CrossRef]
- Ueda, Y.; Yamanda, J.; Fujiwara, K.; Yamamoto, D.; Maruyama, T.; Naritsuka, S. Effect of Growth Pressure on Graphene Direct Growth on R-Plane and c-Plane Sapphires by Low-Pressure CVD. Jpn. J. Appl. Phys. 2019, 58, SAAE04. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Gudaitis, R.; Lazauskas, A.; Jankauskas, Š.; Meškinis, Š. Catalyst-Less and Transfer-Less Synthesis of Graphene on Si(100) Using Direct Microwave Plasma Enhanced Chemical Vapor Deposition and Protective Enclosures. Materials 2020, 13, 5630. [Google Scholar] [CrossRef]
- Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS Nano 2011, 5, 6069–6076. [Google Scholar] [CrossRef]
Reference | Substrate | Catalyst | Technology | Plasma Power (W) | Temperature (°C) | Pressure (mbar) | Gas Ratio (Ar:H2:CH4) |
---|---|---|---|---|---|---|---|
[1] N. Mishra et al. | c-Sapphire | - | CVD | - | 1200 | 25 | 200:20:1 |
[6] H. J. Song et al. | c-Sapphire | - | CVD | - | 950 | Atmospheric | 0:5:3 |
[10] D. Wei et al. | c-Sapphire and SiO2/Si | - | PECVD | 80 | 500–700 | 64 | 0:3:10 |
[23] K. Saito | a- and c- Sapphire | - | CVD | - | 1000 | Atmospheric | 10:5:10 |
[24] Y. Ueda et al. | a-, c- and r- Sapphire | - | LPCVD | - | 1090–1210 | 100 | N2:H2:Bubbled-C6H10 |
[25] J. Li et al. | c-Sapphire | Cu(111) | CVD | - | 1075 | 4 | 35:5:1 and 5:1:1(diluted CH4) |
This work | c-Sapphire | - | PECVD | 100 | 800 | 4 | 10 N2:15:1 |
Factors | ||||
---|---|---|---|---|
a | b | c | abc | |
Run Number | Pressure [mbar] | Power [W] | Time [s] | Gas Type |
1 | 4 (−) | 100 (+) | 600 (+) | Ar (−) |
2 | 6 (+) | 100 (+) | 600 (+) | N2 (+) |
3 | 6 (+) | 50 (−) | 300 (−) | N2 (+) |
4 | 4 (−) | 50 (−) | 300 (−) | Ar (−) |
5 | 6 (+) | 100 (+) | 300 (−) | Ar (−) |
6 | 4 (−) | 50 (−) | 600 (+) | N2 (+) |
7 | 6 (+) | 50 (−) | 600 (+) | Ar (−) |
8 | 4 (−) | 100 (+) | 300 (−) | N2 (+) |
Temperature [°C] | Pressure [mbar] | Plasma Power [W] | N2 [sccm] | Ar [sccm] | CH4 [sccm] | H2 [sccm] | Time [s] |
---|---|---|---|---|---|---|---|
800 | 4 | 100 | 100 | 0 | 20 | 300 | 1200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, M.S.; Bernat-Montoya, I.; Angelova, T.I.; Mojena, A.B.; Díaz-Fernández, F.J.; Kovylina, M.; Martínez, A.; Cienfuegos, E.P.; Gómez, V.J. Plasma-Induced Surface Modification of Sapphire and Its Influence on Graphene Grown by Plasma-Enhanced Chemical Vapour Deposition. Nanomaterials 2023, 13, 1952. https://doi.org/10.3390/nano13131952
Lozano MS, Bernat-Montoya I, Angelova TI, Mojena AB, Díaz-Fernández FJ, Kovylina M, Martínez A, Cienfuegos EP, Gómez VJ. Plasma-Induced Surface Modification of Sapphire and Its Influence on Graphene Grown by Plasma-Enhanced Chemical Vapour Deposition. Nanomaterials. 2023; 13(13):1952. https://doi.org/10.3390/nano13131952
Chicago/Turabian StyleLozano, Miguel Sinusia, Ignacio Bernat-Montoya, Todora Ivanova Angelova, Alberto Boscá Mojena, Francisco J. Díaz-Fernández, Miroslavna Kovylina, Alejandro Martínez, Elena Pinilla Cienfuegos, and Víctor J. Gómez. 2023. "Plasma-Induced Surface Modification of Sapphire and Its Influence on Graphene Grown by Plasma-Enhanced Chemical Vapour Deposition" Nanomaterials 13, no. 13: 1952. https://doi.org/10.3390/nano13131952
APA StyleLozano, M. S., Bernat-Montoya, I., Angelova, T. I., Mojena, A. B., Díaz-Fernández, F. J., Kovylina, M., Martínez, A., Cienfuegos, E. P., & Gómez, V. J. (2023). Plasma-Induced Surface Modification of Sapphire and Its Influence on Graphene Grown by Plasma-Enhanced Chemical Vapour Deposition. Nanomaterials, 13(13), 1952. https://doi.org/10.3390/nano13131952