Combination of CNTs with Classical Drugs for Treatment in Human Colorectal Adenocarcinoma (HT-29) Cell Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. CNT Characterization Techniques
2.3. Drugs
2.4. Study of the Adsorption of Drugs in CNT
2.5. Cell Lines and Cultures
2.6. Cell Treatment
2.7. CNT Dispersion
2.8. MTT Assay
2.9. Cell Morphology Visualization
2.10. Data Analysis
3. Results and Discussion
3.1. Characterization Techniques
3.2. Assay for Drug Adsorption on CNTs
3.3. Cell Assays
3.3.1. Cell Treatment of Free Drugs
3.3.2. Toxicity Study of CNTs
3.3.3. Cell Treatment of Drug/Sample Combinations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rai, A.; Noor, S.; Ahmad, S.I.; Alajmi, M.F.; Hussain, A.; Abbas, H.; Hasan, G.M. Recent Advances and Implication of Bioengineered Nanomaterials in Cancer Theranostics. Medicina 2021, 57, 91. [Google Scholar] [CrossRef]
- Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 9 October 2022).
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal Therapy and Photoacoustic Imaging: Via Nanotheranostics in Fighting Cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for Cancer Therapy: Current Progress and Perspectives. J. Hematol. Oncol. 2021, 14, 85. [Google Scholar] [PubMed]
- Duarte, D.; Rêma, A.; Amorim, I.; Vale, N. Drug Combinations: A New Strategy to Extend Drug Repurposing and Epithelial-Mesenchymal Transition in Breast and Colon Cancer Cells. Biomolecules 2022, 12, 190. [Google Scholar] [CrossRef] [PubMed]
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde Instituto Nacional de Câncer. ABC Do Câncer: Abordagens Básicas Para o Controlo Do Câncer; 2a.; INCA: Rio de Janeiro, RJ, Brazil, 2012; ISBN 9788573182361.
- Rastogi, V.; Yadav, P.; Bhattacharya, S.S.; Mishra, A.K.; Verma, N.; Verma, A.; Pandit, J.K. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells. J. Drug Deliv. 2014, 2014, 124–146. [Google Scholar]
- Amaral, S.I.; Costa-Almeida, R.; Gonçalves, I.C.; Magalhães, F.D.; Pinto, A.M. Carbon Nanomaterials for Phototherapy of Cancer and Microbial Infections. Carbon 2022, 190, 194–244. [Google Scholar] [CrossRef]
- Yan, H.; Xue, Z.; Xie, J.; Dong, Y.; Ma, Z.; Sun, X.; Borga, D.K.; Liu, Z.; Li, J. Toxicity of Carbon Nanotubes as Anti-Tumor Drug Carriers. Int. J. Nanomed. 2019, 14, 10179–10194. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Gao, L.; Chen, K.; Zhang, W.; Zhang, Q.; Li, Q.; Hu, K. Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. Nanoscale Res. Lett. 2021, 16, 88. [Google Scholar] [CrossRef] [PubMed]
- Chouaib, R.; Rana Sarieddine, R.; Hala Gali-Muhtasib, H. Nanoparticles as Drug Delivery Systems for Cancer Treatment: Applications in Targeted Therapy and Personalized Medicine. In Nanoparticle Drug Delivery Systems for Cancer Treatment; Jenny Stanford Publishing: New York, NY, USA, 2020. [Google Scholar]
- Grazú, V.; Moros, M.; Sánchez-Espinel, C. Nanocarriers as Nanomedicines: Design Concepts and Recent Advances; de la Fuente, J.M., Grazu, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4, ISBN 9780124157699. [Google Scholar]
- Raphey, V.R.; Henna, T.K.; Nivitha, K.P.; Mufeedha, P.; Sabu, C.; Pramod, K. Advanced Biomedical Applications of Carbon Nanotube. Mater. Sci. Eng. C 2019, 100, 616–630. [Google Scholar] [CrossRef]
- Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, 12, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayes, C.M.; Liang, F.; Hudson, J.L.; Mendez, J.; Guo, W.; Beach, J.M.; Moore, V.C.; Doyle, C.D.; West, J.L.; Billups, W.E.; et al. Functionalization Density Dependence of Single-Walled Carbon Nanotubes Cytotoxicity in Vitro. Toxicol. Lett. 2006, 161, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y. Carbon Nanotubes for Biomedical Applications. In Industrial Applications of Carbon Nanotubes; Peng, H., Li, Q., Chen, T., Eds.; William Andrew: Norwich, NY, USA, 2017; pp. 323–346. ISBN 9780323415316. [Google Scholar]
- Kou, L.; Sun, J.; Zhai, Y.; He, Z. The Endocytosis and Intracellular Fate of Nanomedicines: Implication for Rational Design. Asian J. Pharm. Sci. 2013, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.N.d.C.; Diaz, R.S.; Justo, J.F.; Piqueira, J.R.C. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int. J. Nanomed. 2021, 16, 5411–5435. [Google Scholar] [CrossRef]
- World Cancer Research Fund International Worldwide Cancer Data. Available online: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/ (accessed on 30 May 2022).
- World Health Organization. Repurposing of Medicines in Oncology-the Underrated Champion of Sustainable Innovation; WHO Regional Office for Europe: Copenhagen, Denmark, 2021.
- Hernandez, J.J.; Pryszlak, M.; Smith, L.; Yanchus, C.; Kurji, N.; Shahani, V.M.; Molinski, S.V. Giving Drugs a Second Chance: Overcoming Regulatory and Financial Hurdles in Repurposing Approved Drugs as Cancer Therapeutics. Front. Oncol. 2017, 7, 273. [Google Scholar] [CrossRef] [Green Version]
- Emolecules. Available online: https://search.emolecules.com/ (accessed on 3 March 2023).
- Zhang, B.; Yan, Y.; Shen, Q.; Ma, D.; Huang, L.; Cai, X.; Tan, S. A Colon Targeted Drug Delivery System Based on Alginate Modificated Graphene Oxide for Colorectal Liver Metastasis. Mater. Sci. Eng. C 2017, 79, 185–190. [Google Scholar] [CrossRef]
- Mirali, M.; Jafariazar, Z.; Mirzaei, M. Loading Tacrine Alzheimer’s Drug at the Carbon Nanotube: DFT Approach. Lab-in-Silico 2021, 2, 3–8. [Google Scholar]
- Igartúa, D.E.; Martinez, C.S.; Alonso, S.d.V.; Prieto, M.J. Combined Therapy for Alzheimer’s Disease: Tacrine and PAMAM Dendrimers Co-Administration Reduces the Side Effects of the Drug without Modifying Its Activity. AAPS PharmSciTech 2020, 21, 110. [Google Scholar] [CrossRef]
- Silva, S.; Marto, J.; Gonçalves, L.; Almeida, A.J.; Vale, N. Formulation, Characterization and Evaluation against Sh-Sy5y Cells of New Tacrine and Tacrine-Map Loaded with Lipid Nanoparticles. Nanomaterials 2020, 10, 2089. [Google Scholar] [CrossRef]
- Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.S.; Paramakrishnan, N.; Suresh, B. Targeted Delivery of Tacrine into the Brain with Polysorbate 80-Coated Poly(n-Butylcyanoacrylate) Nanoparticles. Eur. J. Pharm. Biopharm. 2008, 70, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Mulik, B.B.; Dhumal, S.T.; Sapner, V.S.; Rehman, N.N.M.A.; Dixit, P.P.; Sathe, B.R. Graphene Oxide-Based Electrochemical Activation of Ethionamide towards Enhanced Biological Activity. RSC Adv. 2019, 9, 35463–35472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-Gouveia, J.; Pancani, E.; Jouny, S.; Machelart, A.; Delorme, V.; Salzano, G.; Iantomasi, R.; Piveteau, C.; Queval, C.J.; Song, O.R.; et al. Combination Therapy for Tuberculosis Treatment: Pulmonary Administration of Ethionamide and Booster Co-Loaded Nanoparticles. Sci. Rep. 2017, 7, 5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doroudian, M.; O’Neill, A.; Mac Loughlin, R.; Prina-Mello, A.; Volkov, Y.; Donnelly, S.C. Nanotechnology in Pulmonary Medicine. Curr. Opin. Pharmacol. 2021, 56, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.P.; Soares, O.S.G.P.; Gonçalves, A.G.; Órfão, J.J.M.; Pereira, M.F.R.; Figueiredo, J.L. Different Methodologies for Synthesis of Nitrogen Doped Carbon Nanotubes and Their Use in Catalytic Wet Air Oxidation. Appl. Catal. A Gen. 2017, 548, 62–70. [Google Scholar] [CrossRef]
- National Library of Medicine: National Center for Biotechnology Information PubChem-Fluorouracil. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3385 (accessed on 13 March 2022).
- National Library of Medicine: National Center for Biotechnology Information PubChem-Tacrine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1935 (accessed on 13 March 2022).
- National Library of Medicine: National Center for Biotechnology Information PubChem-Ethionamide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2761171 (accessed on 13 March 2022).
- Xu, Q.A.; Madden, T.L. Analytical Methods for Therapeutic Drug Monitoring and Toxicology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 9780470455616. [Google Scholar]
- Nassim, M.A.; Shirazi, F.H.; Cripps, C.M.; Veerasinghan, S.; Molepo, M.J.; Obrocea, M.; Redmond, D.; Bates, S.; Fry, D.; Stewart, D.J.; et al. An HPLC Method for the Measurement of 5-Fluorouracil in Human Plasma with a Low Detection Limit and a High Extraction Yield. Int. J. Mol. Med. 2002, 10, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, Y.; Zhang, Z.R. Simultaneous Determination of N-Butyramide-Tacrine and Tacrine in Mouse Plasma and Brain Homogenate by High-Performance Liquid Chromatography with a Simple Gradient Solvent System. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 791, 285–290. [Google Scholar] [CrossRef] [PubMed]
- University Boulevard, USA. HT-29 HTB-38 TM. Available online: www.atcc.org (accessed on 22 May 2022).
- Wang, R.; Hughes, T.; Beck, S.; Vakil, S.; Li, S.; Pantano, P.; Draper, R.K. Generation of Toxic Degradation Products by Sonication of Pluronic® Dispersants: Implications for Nanotoxicity Testing. Nanotoxicology 2013, 7, 1272–1281. [Google Scholar] [CrossRef] [Green Version]
- Ciofani, G.; Raffa, V.; Pensabene, V.; Menciassi, A.; Dario, P. Dispersion of Multi-Walled Carbon Nanotubes in Aqueous Pluronic F127 Solutions for Biological Applications. Fuller. Nanotub. Carbon Nanostruct. 2009, 17, 11–25. [Google Scholar] [CrossRef]
- Hirsch, C.; Krug, H. Suspending and Diluting Nanomaterials Carbon Based Nanomaterials; EMPA: Materials Science & Technology: Dübendorf, Switzerland, 2014; pp. 1–7. [Google Scholar]
- González-Legarreta, L.; Renero-Lecuna, C.; Valiente, R.; Fanarraga, M.L. Development of an Accurate Method for Dispersion and Quantification of Carbon Nanotubes in Biological Media. Anal. Methods 2020, 12, 5642–5647. [Google Scholar] [CrossRef]
- Raval, A.; Pillai, S.A.; Bahadur, A.; Bahadur, P. Systematic Characterization of Pluronic Micelles and Their Application for Solubilization and in Vitro Release of Some Hydrophobic Anticancer Drugs. J. Mol. Liq. 2017, 230, 473–481. [Google Scholar] [CrossRef]
- Garriga, R.; Herrero-Continente, T.; Palos, M.; Cebolla, V.L.; Osada, J.; Muñoz, E.; Rodríguez-Yoldi, M.J. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and Mcf-7 Cell Lines. Nanomaterials 2020, 10, 1617. [Google Scholar] [CrossRef] [PubMed]
- Soares, O.S.G.P.; Rocha, R.P.; Gonçalves, A.G.; Figueiredo, J.L.; Órfão, J.J.M.; Pereira, M.F.R. Easy Method to Prepare N-Doped Carbon Nanotubes by Ball Milling. Carbon 2015, 91, 114–121. [Google Scholar] [CrossRef]
- Figueiredo, J.; Ribeiro, F. Catálise Heterogénea; 2a.; Fundação Calouste Gulbenkian: Lisboa, Portugal, 2007. [Google Scholar]
- Soares, O.S.G.P.; Gonçalves, A.G.; Delgado, J.J.; Órfão, J.J.M.; Pereira, M.F.R. Modification of Carbon Nanotubes by Ball-Milling to Be Used as Ozonation Catalysts. Catal. Today 2015, 249, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Soares, O.S.G.P.; Rocha, R.P.; Órfão, J.J.M.; Pereira, M.F.R.; Figueiredo, J.L. Mechanothermal Approach for N-, S-, P-, and B-Doping of Carbon Nanotubes: Methodology and Catalytic Performance in Wet Air Oxidation. C 2019, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Rocha, R.; Soares, O.; Figueiredo, J.; Pereira, M. Tuning CNT Properties for Metal-Free Environmental Catalytic Applications. Carbon Res. 2016, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- González-Lavado, E.; Valdivia, L.; García-Castaño, A.; González, F.; Pesquera, C.; Valiente, R.; Fanarraga, M.L. Multi-Walled Carbon Nanotubes Complement the Anti-Tumoral Effect of 5-Fluorouracil. Oncotarget 2019, 10, 2022–2029. [Google Scholar] [CrossRef] [Green Version]
- Kamble, R.V.; Bhinge, S.D.; Mohite, S.K.; Randive, D.S.; Bhutkar, M.A. In Vitro Targeting and Selective Killing of Mcf-7 and Colo320dm Cells by 5-Fluorouracil Anchored to Carboxylated SWCNTs and MWCNTs. J. Mater. Sci. Mater. Med. 2021, 32, 71. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Shin, H.S.; Kim, Y.J.; Chung, H. Structural Modification of Carbon Nanotubes by Various Ball Milling. J. Alloys Compd. 2007, 434–435, 428–432. [Google Scholar] [CrossRef]
- Tucho, W.M.; Mauroy, H.; Walmsley, J.C.; Deledda, S.; Holmestad, R.; Hauback, B.C. The Effects of Ball Milling Intensity on Morphology of Multiwall Carbon Nanotubes. Scr. Mater. 2010, 63, 637–640. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Malaiya, A.; Kesharwani, P.; Soni, D.; Jain, A. Biomedical Applications and Toxicities of Carbon Nanotubes. Drug Chem. Toxicol. 2022, 45, 435–450. [Google Scholar] [CrossRef]
- Yaron, P.N.; Holt, B.D.; Short, P.A.; Lösche, M.; Islam, M.F.; Dahl, K.N. Single Wall Carbon Nanotubes Enter Cells by Endocytosis and Not Membrane Penetration. J. Nanobiotechnol. 2011, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Duarte, D.; Cardoso, A.; Vale, N. Synergistic Growth Inhibition of HT-29 Colon and MCF-7 Breast Cancer Cells with Simultaneous and Sequential Combinations of Antineoplastics and CNS Drugs. Int. J. Mol. Sci. 2021, 22, 7408. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, Y.; Sun, B.; Chen, C. Understanding the Toxicity of Carbon Nanotubes. Acc. Chem. Res. 2013, 46, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.P.; Devasena, T. Toxicity of Carbon Nanotubes: A Review. Toxicol. Ind. Health 2018, 34, 200–210. [Google Scholar] [CrossRef]
- Rodriguez-Yañez, Y.; Muñoz, B.; Albores, A. Mechanisms of Toxicity by Carbon Nanotubes. Toxicol. Mech. Methods 2013, 23, 178–195. [Google Scholar] [CrossRef]
- Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int. J. Nanomed. 2021, 16, 1681–1706. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kaur, A.; Jain, U.K.; Chandra, R.; Madan, J. Stealth Recombinant Human Serum Albumin Nanoparticles Conjugating 5-Fluorouracil Augmented Drug Delivery and Cytotoxicity in Human Colon Cancer, HT-29 Cells. Colloids Surf. B Biointerfaces 2017, 155, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Udofot, O.; Affram, K.; Israel, B.; Agyare, E. Cytotoxicity of 5-Fluorouracil-Loaded PH-Sensitive Liposomal Nanoparticles in Colorectal Cancer Cell Lines. Integr. Cancer Sci. Ther. 2015, 2, 245–252. [Google Scholar] [CrossRef] [Green Version]
Sample | d (µm) | SBET (m2·g−1) | VpT, P/P0=0.95 (cm3·g−1) |
---|---|---|---|
CNT | 262.8 | 188 | 1.49 |
CNT-HNO3 | 239.1 | 193 | 1.68 |
CNT-HNO3-600 | 261.1 | 192 | 1.49 |
CNT-H2SO4 | 261.8 | 173 | 1.65 |
CNT-BM | 98.9 | 275 | 0.81 |
CNT-BM-N | 123.7 | 186 | 0.93 |
CNT-HNO3-BM | 50.4 | 267 | 0.77 |
CNT-HNO3-600-BM | 36.1 | 281 | 0.73 |
CNT-H2SO4-BM | 57.3 | 246 | 0.82 |
Sample | EA (wt.%) | TPD (µmol·g−1) | TGA (wt.%) | ||||
---|---|---|---|---|---|---|---|
N | S | O | CO | CO2 | VCs | Ash | |
CNT | 0 | 0 | 0.2 | 334 | 176 | 4.1 | 10 |
CNT-HNO3 | 0 | 0 | 1.2 | 1002 | 440 | 9.2 | 3.0 |
CNT-HNO3-600 | 0 | 0 | 0.5 | 900 | 360 | 4.9 | 3.5 |
CNT-H2SO4 | 0 | 0.2 | 1.4 | n.d. | n.d. | 7.9 | 0.9 |
CNT-BM-N | 4.3 | 0 | 1.2 | n.d. | n.d. | 12.9 | 1.9 |
Sample | 5-FU (µM) | TAC (µM) | ETA (µM) |
---|---|---|---|
No sample | 6.10 | >100 | >100 |
Sample | 5-FU (µM) | TAC (µM) | ETA (µM) |
---|---|---|---|
CNT-BM | 2.87 | 19.73 | >100 |
CNT-BM-N | 1.98 | 15.32 | >100 |
CNT-HNO3-BM | 6.74 | 23.31 | >100 |
CNT-HNO3-600-BM | 3.13 | 25.72 | >100 |
CNT-H2SO4-BM | 2.50 | 15.81 | >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, S.; Vale, N.; Soares, O.S.G.P. Combination of CNTs with Classical Drugs for Treatment in Human Colorectal Adenocarcinoma (HT-29) Cell Line. Nanomaterials 2023, 13, 1933. https://doi.org/10.3390/nano13131933
Abreu S, Vale N, Soares OSGP. Combination of CNTs with Classical Drugs for Treatment in Human Colorectal Adenocarcinoma (HT-29) Cell Line. Nanomaterials. 2023; 13(13):1933. https://doi.org/10.3390/nano13131933
Chicago/Turabian StyleAbreu, Sara, Nuno Vale, and Olívia Salomé G. P. Soares. 2023. "Combination of CNTs with Classical Drugs for Treatment in Human Colorectal Adenocarcinoma (HT-29) Cell Line" Nanomaterials 13, no. 13: 1933. https://doi.org/10.3390/nano13131933
APA StyleAbreu, S., Vale, N., & Soares, O. S. G. P. (2023). Combination of CNTs with Classical Drugs for Treatment in Human Colorectal Adenocarcinoma (HT-29) Cell Line. Nanomaterials, 13(13), 1933. https://doi.org/10.3390/nano13131933