Effect of Calcination Temperatures on Surface Properties of Spinel ZnAl2O4 Prepared via the Polymeric Citrate Complex Method—Catalytic Performance in Glycerolysis of Urea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Reaction Test
2.3. Catalyst Characterization
3. Results and Discussion
3.1. Characterizations of Fresh Catalysts
3.2. Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current biodiesel production technologies: A comparative review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar] [CrossRef]
- Ambat, I.; Srivastava, V.; Sillanpää, M. Recent advancement in biodiesel production methodologies using various feedstock: A review. Renew. Sustain. Energy Rev. 2018, 90, 356–369. [Google Scholar] [CrossRef]
- Fan, X.; Burton, R.; Zhou, Y. Glycerol (byproduct of biodiesel production) as a source for fuels and chemicals mini review. Open Fuels Ener. Sci. J. 2010, 3, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Gómez, J.R.; Gómez-Jiménez-Aberasturi, O.; Ramirez-Lopez, C.; Belsué, M. A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical. Org. Process Res. Dev. 2012, 16, 389–399. [Google Scholar] [CrossRef]
- Christy, S.; Noschese, A.; Lomeli-Rodriguez, M.; Greeves, N.; Lopez-Sanchez, J.A. Recent progress in the synthesis and applications of glycerol carbonate. Curr. Opin. Green Sustain. Chem. 2018, 14, 99–107. [Google Scholar] [CrossRef]
- Teng, W.K.; Ngoh, G.C.; Yusoff, R.; Aroua, M.K. A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters. Energy Convers. Manag. 2014, 88, 484–497. [Google Scholar] [CrossRef]
- Sonnati, M.O.; Amigoni, S.; de Givenchy, E.P.T.; Darmanin, T.; Choulet, O.; Guittard, F. Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties and applications. Green Chem. 2013, 15, 283–306. [Google Scholar] [CrossRef]
- Ochoa-Gómez, J.R.; Gómez-Jiménez-Aberasturi, O.; Maestro-Madurga, B.; Pesquera-Rodríguez, A.; Ramírez-López, C.; Lorenzo-Ibarreta, L.; Torrecilla-Soria, J.; Villarán-Velasco, M.C. Synthesis of glycerol carbonate from glycerol and dimethyl carbonate by transesterification: Catalyst screening and reaction optimization. Appl. Catal. A Gen. 2009, 366, 315–324. [Google Scholar] [CrossRef]
- Song, X.; Pan, D.; Wu, Y.; Cheng, P.; Wei, R.; Gao, L.; Zhang, J.; Xiao, G. Synthesis of glycerol carbonate over porous La-Zr based catalysts: The role of strong and super basic sites. J. Alloys Compd. 2018, 750, 828–837. [Google Scholar] [CrossRef]
- Devarajan, A.; Thiripuranthagan, S.; Radhakrishnan, R.; Kumaravel, S. Solvent free transesterification of glycerol into glycerol carbonate over nanostructured CaAl hydrotalcite catalyst. J. Nanosci. Nanotechnol. 2018, 18, 4588–4599. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.; He, D. Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li-La2O3 catalysts. Appl. Catal. A Gen. 2018, 564, 234–242. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Zhao, N.; Wei, W.; Sun, Y. Synthesis of cyclic carbonates from urea and diols over metal oxides. Catal. Today 2006, 115, 111–116. [Google Scholar] [CrossRef]
- Park, C.-y.; Nguyen-Phu, H.; Shin, E.W. Glycerol carbonation with CO2 and La2O2CO3/ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure. Mol. Catal. 2017, 435, 99–109. [Google Scholar] [CrossRef]
- Song, X.; Wu, Y.; Pan, D.; Zhang, J.; Xu, S.; Gao, L.; Wei, R.; Xiao, G. Functionalized DVB-based polymer catalysts for glycerol and CO2 catalytic conversion. J. CO2 Util. 2018, 28, 326–334. [Google Scholar] [CrossRef]
- Nguyen-Phu, H.; Park, C.-y.; Eun, W.S. Activated red mud-supported Zn/Al oxide catalysts for catalytic conversion of glycerol to glycerol carbonate: FTIR analysis. Catal. Commun. 2016, 85, 52–56. [Google Scholar] [CrossRef]
- Nguyen-Phu, H.; Shin, E.W. Disordered structure of ZnAl2O4 phase and the formation of a Zn NCO complex in ZnAl mixed oxide catalysts for glycerol carbonylation with urea. J. Catal. 2019, 373, 147–160. [Google Scholar] [CrossRef]
- Nguyen-Phu, H.; Park, C.-y.; Shin, E.W. Dual catalysis over ZnAl mixed oxides in the glycerolysis of urea: Homogeneous and heterogeneous reaction routes. Appl. Catal. A Gen. 2018, 552, 1–10. [Google Scholar] [CrossRef]
- Fujita, S.-i.; Yamanishi, Y.; Arai, M. Synthesis of glycerol carbonate from glycerol and urea using zinc-containing solid catalysts: A homogeneous reaction. J. Catal. 2013, 297, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Sun, X.; Liu, Y.; Zhou, K.; Li, Y. Porous ZnAl2O4 synthesized by a modified citrate technique. J. Alloys Compd. 2004, 376, 257–261. [Google Scholar]
- Sotomayor, F.J.; Cychosz, K.A.; Thommes, M. Characterization of micro/mesoporous materials by physisorption: Concepts and case studies. Acc. Mater. Surf. Res. 2018, 3, 34–50. [Google Scholar]
- Tangcharoen, T.; T-Thienprasert, J.; Kongmark, C. Effect of calcination temperature on structural and optical properties of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles. J. Adv. Ceram. 2019, 8, 352–366. [Google Scholar] [CrossRef] [Green Version]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Dwibedi, D.; Murugesan, C.; Leskes, M.; Barpanda, P. Role of annealing temperature on cation ordering in hydrothermally prepared zinc aluminate (ZnAl2O4) spinel. Mater. Res. Bull. 2018, 98, 219–224. [Google Scholar] [CrossRef]
- Simeone, D.; Dodane-Thiriet, C.; Gosset, D.; Daniel, P.; Beauvy, M. Order–disorder phase transition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels. J. Nucl. Mater. 2002, 300, 151–160. [Google Scholar] [CrossRef]
- Barpanda, P.; Behera, S.; Gupta, P.; Pratihar, S.; Bhattacharya, S. Chemically induced order disorder transition in magnesium aluminium spinel. J. Eur. Ceram. Soc. 2006, 26, 2603–2609. [Google Scholar] [CrossRef]
- Da Silva, A.A.; Gonçalves, A.d.S.; Davolos, M.R. Characterization of nanosized ZnAl2O4 spinel synthesized by the sol–gel method. J. Sol-Gel Sci. Technol. 2009, 49, 101–105. [Google Scholar] [CrossRef]
- Busca, G.; Lorenzelli, V.; Escribano, V.S.; Guidetti, R. FT-113 study of the surface properties of the spinels NiAl2O4 and CoAl2O4 in relation to those of transitional aluminas. J. Catal. 1991, 131, 167–177. [Google Scholar] [CrossRef]
- Morterra, C.; Magnacca, G. A case study: Surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal. Today 1996, 27, 497–532. [Google Scholar] [CrossRef]
- Menon, S.G.; Choudhari, K.S.; Shivashankar, S.A.; Chidangil, S.; Kulkarni, S.D. Microwave solution route to ceramic ZnAl2O4 nanoparticles in 10 minutes: Inversion and photophysical changes with thermal history. New J. Chem. 2017, 41, 5420–5428. [Google Scholar] [CrossRef]
- Duan, X.; Yuan, D.; Yu, F. Cation distribution in Co-doped ZnAl2O4 nanoparticles studied by X-ray photoelectron spectroscopy and 27Al solid-state NMR spectroscopy. Inorg. Chem. 2011, 50, 5460–5467. [Google Scholar] [CrossRef]
- Tshabalala, K.; Cho, S.-H.; Park, J.-K.; Pitale, S.S.; Nagpure, I.; Kroon, R.; Swart, H.; Ntwaeaborwa, O. Luminescent properties and X-ray photoelectron spectroscopy study of ZnAl2O4: Ce3+, Tb3+ phosphor. J. Alloys Compd. 2011, 509, 10115–10120. [Google Scholar] [CrossRef]
- Druska, P.; Steinike, U.; Šepelák, V. Surface structure of mechanically activated and of mechanosynthesized zinc ferrite. J. Solid State Chem. 1999, 146, 13–21. [Google Scholar] [CrossRef]
- Jayathilake, D.; Peiris, T.N.; Sagu, J.S.; Potter, D.B.; Wijayantha, K.; Carmalt, C.; Southee, D. Microwave-assisted synthesis and processing of Al-doped, Ga-doped, and Al, Ga codoped ZnO for the pursuit of optimal conductivity for transparent conducting film fabrication. ACS Sustain. Chem. Eng. 2017, 5, 4820–4829. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wang, X.; Yu, Y.; Pei, Z.; Bai, X.; Sun, C.; Huang, R.; Wen, L. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 2000, 158, 134–140. [Google Scholar] [CrossRef]
- Murthy, I.; Swamy, C. Catalytic decomposition of 2-propanol on Co1+xAl2−xO4 spinel system. Catal. Lett. 1994, 27, 103–112. [Google Scholar] [CrossRef]
- Busca, G.; Lorenzelli, V.; Ramis, G.; Willey, R.J. Surface sites on spinel-type and corundum-type metal oxide powders. Langmuir 1993, 9, 1492–1499. [Google Scholar] [CrossRef]
- Lundie, D.T.; McInroy, A.R.; Marshall, R.; Winfield, J.M.; Jones, P.; Dudman, C.C.; Parker, S.F.; Mitchell, C.; Lennon, D. Improved description of the surface acidity of η-alumina. J. Phys. Chem. B 2005, 109, 11592–11601. [Google Scholar] [CrossRef]
- Trombetta, M.; Busca, G.; Lenarda, M.; Storaro, L.; Ganzerla, R.; Piovesan, L.; Lopez, A.J.; Alcantara-Rodrìguez, M.; Rodríguez-Castellón, E. Solid acid catalysts from clays: Evaluation of surface acidity of mono-and bi-pillared smectites by FT-IR spectroscopy measurements, NH3-TPD and catalytic tests. Appl. Catal. A Gen. 2000, 193, 55–69. [Google Scholar]
- Sohlberg, K.; Pantelides, S.T.; Pennycook, S.J. Surface Reconstruction and the Difference in Surface Acidity between γ- and η-Alumina. J. Am. Chem. Soc. 2001, 123, 26–29. [Google Scholar] [CrossRef]
- Mefford, J.T.; Hardin, W.G.; Dai, S.; Johnston, K.P.; Stevenson, K.J. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 2014, 13, 726–732. [Google Scholar] [CrossRef]
- Turney, T.W.; Patti, A.; Gates, W.; Shaheen, U.; Kulasegaram, S. Formation of glycerol carbonate from glycerol and urea catalysed by metal monoglycerolates. Green Chem. 2013, 15, 1925–1931. [Google Scholar] [CrossRef]
- Lu, F.; Song, B.; He, P.; Wang, Z.; Wang, J. Electrochemical impedance spectroscopy (EIS) study on the degradation of acrylic polyurethane coatings. RSC Adv. 2017, 7, 13742–13748. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, G.P.; Yadav, G.D. Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide as catalyst. Catal. Today 2018, 309, 153–160. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Fan, M.; Dong, Y.; Jiang, P. The value-added utilization of glycerol for the synthesis of glycerol carbonate catalyzed with a novel porous ZnO catalyst. RSC Adv. 2016, 6, 76223–76230. [Google Scholar] [CrossRef]
- Rubio-Marcos, F.; Calvino-Casilda, V.; Bañares, M.A.; Fernandez, J.F. Control of the interphases formation degree in Co3O4/ZnO catalysts. ChemCatChem 2013, 5, 1431–1440. [Google Scholar] [CrossRef]
- Zhang, J.; He, D. Lanthanum-based mixed oxides for the synthesis of glycerol carbonate from glycerol and urea. React. Kinet. Mech. Catal. 2014, 113, 375–392. [Google Scholar] [CrossRef]
- Procopio, D.; Di Gioia, M.L. An overview of the latest advances in the catalytic synthesis of glycerol carbonate. Catalysts 2022, 12, 50. [Google Scholar] [CrossRef]
- Mallesham, B.; Rangaswamy, A.; Rao, B.G.; Rao, T.V.; Reddy, B.M. Solvent-free production of glycerol carbonate from bioglycerol with urea over nanostructured promoted SnO2 catalysts. Catal. Lett. 2020, 150, 3626–3641. [Google Scholar] [CrossRef]
- Nguyen-Phu, H.; Shin, E.W. Investigating time-dependent Zn species over Zn-based catalysts in glycerol carbonylation with urea and their roles in the reaction mechanism. Appl. Catal. A Gen. 2018, 561, 28–40. [Google Scholar] [CrossRef]
- Chen, J.; Wang, C.; Dong, B.; Leng, W.; Huang, J.; Ge, R.; Gao, Y. Ionic liquids as eco-friendly catalysts for converting glycerol and urea into high value-added glycerol carbonate. Chin. J. Catal. 2015, 36, 336–343. [Google Scholar] [CrossRef]
Catalyst | Textural Properties | Chemical Composition | Order Parameter c | ZnAl2O4 Crystallite Size (nm) d | ||
---|---|---|---|---|---|---|
SBET (m2/g) a | Vpore (cm3/g) a | Dpore (nm) a | Zn/Al Molar Ratio b | |||
ZnAl2O4-550 | 37.65 | 0.21 | 14.09 | 2.07 | 0.4784 | 20.29 |
ZnAl2O4-650 | 25.29 | 0.14 | 15.31 | 2.10 | 0.4922 | 25.50 |
ZnAl2O4-750 | 19.17 | 0.11 | 16.87 | 2.11 | 0.5074 | 29.21 |
ZnAl2O4-850 | 9.45 | 0.10 | 27.16 | 2.06 | 0.5153 | 34.06 |
Catalyst | Intensity Ratio of AlO4/(AlO4 + AlO6) a | Intensity Ratio of ZnO6/(ZnO4 + ZnO6) b | Acidic Sites (mmol/g) | The Fraction of Ob (%) c |
---|---|---|---|---|
ZnAl2O4-550 | 0.365 | 0.409 | 0.45 | 15.7 |
ZnAl2O4-650 | 0.222 | 0.358 | 0.32 | 13.6 |
ZnAl2O4-750 | - | - | 0.29 | - |
ZnAl2O4-850 | - | - | 0.1 | - |
Catalyst | Glycerol Conversion (%) | GC Yield (%) | Selectivity (%) | Acidic Sites (mmol/g) | Basic Sites (mmol/g) | |||
---|---|---|---|---|---|---|---|---|
GC | (2) | (4) | (5) | |||||
ZnAl2O4-550 | 72.2 ± 0.7 | 33 ± 0.3 | 45.8 ± 0.5 | 34.3 ± 0.1 | 12.4 ± 0.2 | 7.5 ± 0.1 | 0.45 | 0.23 |
ZnAl2O4-650 | 72.2 ± 0.8 | 30 ± 0.3 | 40.9 ± 0.7 | 40.9 ± 0.3 | 10.9 ± 0.2 | 7.3 ± 0.1 | 0.32 | 0.13 |
Catalyst | Mol Ratio Glycerol/Urea | Weight % Catalyst/Glycerol | Glycerol Conversion (%) | GC Yield (%) | Reference |
---|---|---|---|---|---|
ZnO pure | 1:1.5 | 5 | ~60 | ~35 | [44] |
ZMG | 1:1.5 | 5 | ~65 | ~55 | [44] |
Co3O4/ZnO | 1:1.5 | 5 | 69 | 97 | [45] |
La2Cu0.5Fe0.5O4 | 1:1 | 5 | 49 | 82 | [46] |
La(OH)3 | 1:1.5 | 5 | 42.3 | 55.6 | [47] |
MoO3/SnO2 | 1:3 | 10 | 69 | 97 | [48] |
MgO | 1:1.5 | - | 71 | 100 | [43] |
ZnO | 1:1.5 | 5 | 67 | 49 | [49] |
[HOEMIm][PF6] | 1:1.5 | - | 62 | 47 | [50] |
ZnAl2O4-550 | 1:1.5 | 5 | 72.2 | 33 | This work |
ZnAl2O4-650 | 1:1.5 | 5 | 72.2 | 30 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham-Ngoc, N.; Nguyen-Phu, H.; Shin, E.W. Effect of Calcination Temperatures on Surface Properties of Spinel ZnAl2O4 Prepared via the Polymeric Citrate Complex Method—Catalytic Performance in Glycerolysis of Urea. Nanomaterials 2023, 13, 1901. https://doi.org/10.3390/nano13131901
Pham-Ngoc N, Nguyen-Phu H, Shin EW. Effect of Calcination Temperatures on Surface Properties of Spinel ZnAl2O4 Prepared via the Polymeric Citrate Complex Method—Catalytic Performance in Glycerolysis of Urea. Nanomaterials. 2023; 13(13):1901. https://doi.org/10.3390/nano13131901
Chicago/Turabian StylePham-Ngoc, Nhiem, Huy Nguyen-Phu, and Eun Woo Shin. 2023. "Effect of Calcination Temperatures on Surface Properties of Spinel ZnAl2O4 Prepared via the Polymeric Citrate Complex Method—Catalytic Performance in Glycerolysis of Urea" Nanomaterials 13, no. 13: 1901. https://doi.org/10.3390/nano13131901
APA StylePham-Ngoc, N., Nguyen-Phu, H., & Shin, E. W. (2023). Effect of Calcination Temperatures on Surface Properties of Spinel ZnAl2O4 Prepared via the Polymeric Citrate Complex Method—Catalytic Performance in Glycerolysis of Urea. Nanomaterials, 13(13), 1901. https://doi.org/10.3390/nano13131901