Polarization Splitting at Visible Wavelengths with the Rutile TiO2 Ridge Waveguide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tymon, B.; Watts, M.R. Polarization-transparent microphotonic devices in the strong confinement limit. Nat. Photon. 2007, 1, 57–60. [Google Scholar]
- Wim, B.; Dirk, T.; Pieter, D. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt. Exp. 2007, 15, 1567–1578. [Google Scholar]
- Hiroshi, F.; Koji, Y. Silicon photonic circuit with polarization diversity. Opt. Exp. 2008, 16, 4872–4880. [Google Scholar]
- Dai, D.; Liu, L.; Gao, S.; Xu, D.X.; He, S. Polarization management forsilicon photonic integrated circuits. Laser Photon. Rev. 2013, 7, 303–328. [Google Scholar] [CrossRef]
- Dai, D.; Bauters, J.; Bowers, J.E. Passive technologies for future large-scale photonic integrated circuits on silicon: Polarization handling, light non-reciprocity and loss reduction. Light Sci. Appl. 2012, 1, e1. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Chen, Y.K.; Duan, G.H.; Neilson, D.T. Silicon photonic devices and integrated circuits. Nanophotonics 2014, 3, 215–228. [Google Scholar] [CrossRef]
- Timo, P.; Ralf, P. Coherent digital polarization deliversity receiver for real-time polarization-multiplexed OPSK transmission at 2.8 Gb/s. IEEE Photon. Technol. Lett. 2007, 19, 1988–1990. [Google Scholar]
- Po, D.; Xiang, L. Monolithic silicon photonic integrated circuits for compact 100 + Gb/s coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 6100108. [Google Scholar]
- Po, D.; Bell, L. Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6100609. [Google Scholar]
- LanTian, F.; Ming, Z. On-chip coherent conversion of photonic quantument anglement between different degrees of freedom. Nat. Commun. 2016, 7, 11985. [Google Scholar]
- Masa-Aki, K.; Kunimasa, S.; Masanori, K. Design of miniaturized silicon wire and slot waveguide polarization splitter based on aresonant tunneling. Opt. Exp. 2009, 17, 19225–19234. [Google Scholar]
- Lin, S.; Hu, J.; Crozier, K.B. Ultracompact, broadband slot waveguide polarization splitter. Appl. Phys. Lett. 2011, 98, 151101. [Google Scholar] [CrossRef]
- Andrea, C.; Roberta, R.; Roberto, O. Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2011, 2, 566. [Google Scholar]
- JueMing, B.; ZhaoRong, F.; Tanumoy, P. Very-large-scale integrated quantum graph photonics. Nat. Photon. 2023, 17, 1–10. [Google Scholar]
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef]
- Smullin, S.J.; Savukov, I.M.; Vasilakis, G.; Ghosh, R.K.; Romalis, M.V. Low-noise high-density alkali-metal scalar magnetometer. Phys. Rev. A 2009, 80, 033420. [Google Scholar] [CrossRef] [Green Version]
- Lvovsky, A.I.; Sanders, B.C.; Tittel, W. Optical quantum memory. Nat. Photonics 2009, 3, 706–714. [Google Scholar] [CrossRef]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
- Aharonovich, I.; Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 2014, 2, 911–928. [Google Scholar] [CrossRef]
- Chen, Y.; Ryou, A.; Friedfeld, M.R.; Fryett, T.; Whitehead, J.; Cossairt, B.M.; Majumdar, A. Deterministic positioning of colloidal quantum dots on silicon nitride nanobeam cavities. Nano Lett. 2018, 18, 6404–6410. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.S.; Guo, S.; Makarov, N.S.; Klimov, V.I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano. 2015, 9, 10386–10393. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-M.; Clark, G.; Schaibley, J.R. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 2015, 10, 497–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, J.; Niehues, I.; Tonndorf, P.; Schmidt, R.; Wigger, D.; Schneider, R.; Stiehm, T.; Michaelis de Vasconcellos, S.; Reiter, D.E.; Kuhn, T.; et al. Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 2016, 28, 7101–7105. [Google Scholar] [CrossRef]
- Niffenegger, R.J.; Stuart, J.; Sorace-Agaskar, C. Integrated multi-wavelength control of an ion qubit. Nature 2020, 586, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.M.; Ryu, H.H.; Park, S.R.; Jeong, J.W.; Lee, S.G.; Lee, E.H.; Park, S.G.; Woo, D.; Kim, S.; Beom-Hoan, O. Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application. IEEE Photon. Technol. Lett. 2003, 15, 72–74. [Google Scholar] [CrossRef]
- Jiao, Y.; Dai, D.; Shi, Y.; He, S. Shortened polarization beam splitters with two cascaded multimode interference sections. IEEE Photon. Technol. Lett. 2009, 21, 1538–1540. [Google Scholar] [CrossRef]
- Soldano, L.B.; De Vreede, A.I.; Smit, M.K.; Verbeek, B.H.; Metaal, E.G.; Green, F.H. Mach-Zehnder interferometer polarization splitter in InGaAsP-InP. IEEE Photon. Technol. Lett. 1994, 6, 402–405. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; Wang, Z.; Peters, J.; Bowers, J.E. Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides. IEEE Photon. Technol. Lett. 2012, 24, 673–675. [Google Scholar] [CrossRef]
- Liang, T.K.; Tsang, H.K. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photon. Technol. Lett. 2005, 17, 393–395. [Google Scholar] [CrossRef]
- Romero-García, S.; Merget, F.; Zhong, F.; Finkelstein, H.; Witzens, J. Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. Opt. Express 2013, 21, 14036–14046. [Google Scholar] [CrossRef]
- Augustin, L.M.; Hanfoug, R. A compact integrated polarization splitter/converter in InGaAsP-InP. IEEE Photon.Technol. Lett. 2007, 19, 1286–1288. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Dai, D.; He, S. Proposal for an ultra-compact PBS based on a photonic crystal-assisted multimode interference coupler. IEEE Photon. Technol. Lett. 2007, 19, 825–827. [Google Scholar] [CrossRef]
- Eric, C.; Khanh, V.D.; Jean, D. Polarization beam splitting using a birefringent graded photonic crystal. Opt. Lett. 2013, 38, 459–461. [Google Scholar]
- Tang, Y.; Dai, D.; He, S. Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits. IEEE Photon. Technol. Lett. 2009, 21, 242–244. [Google Scholar] [CrossRef]
- Ao, X.; Liu, L.; Wosinski, L.; He, S. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type. Appl. Phys. Lett. 2006, 89, 171115. [Google Scholar] [CrossRef]
- Watts, M.R.; Haus, H.A.; Ippen, E.P. Integrated mode-evolution-based polarization splitter. Opt. Lett. 2005, 30, 967–969. [Google Scholar] [CrossRef] [PubMed]
- Winnie; Ye, N.; Xu, D.-X.; Janz, S.; Waldron, P.; Cheben, P.; Tarr, N.G. Passive broadband silicon-on-insulator polarization splitter. Opt. Lett. 2007, 32, 1492–1494. [Google Scholar]
- Guan, X.; Wu, H.; Shi, Y.; Wosinski, L.; Dai, D. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt. Lett. 2013, 38, 3005–3008. [Google Scholar] [CrossRef]
- Dai, D.; Bowers, J.E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt. Exp. 2011, 19, 18614–18620. [Google Scholar] [CrossRef]
- Zisu, G.; Rui, Y.; Wei, J. Optimal design of DC-based polarization beam splitter in lithium niobate on insulator. Opt. Commun. 2017, 396, 23–27. [Google Scholar]
- Xu, H.; Shi, Y. On-chip silicon TE-pass polarizer based on asymmetrical directional couplers. IEEE Photon. Technol. Lett. 2017, 29, 861–864. [Google Scholar] [CrossRef]
- Wang, X.; Fujimaki, M.; Awazu, K. Photonic crystal structures in titanium dioxide (TiO2) and their optimal design. Opt. Exp. 2005, 13, 1486–1497. [Google Scholar] [CrossRef] [PubMed]
- Biswajeet, G.; Jaime, C.; Michal, L. A thermal silicon microring resonators with titanium oxide cladding. Opt. Express 2013, 21, 26557–26563. [Google Scholar]
- Djordjevic, S.S.; Shang, K.; Guan, B.; Cheung, S.T.S.; Liao, L.; Basak, J.; Liu, H.-F.; Yoo, S.J.B. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Exp. 2013, 21, 13958–13968. [Google Scholar] [CrossRef] [PubMed]
- Adair, R.; Chase, L.L.; Payne, S.A. Nonlinear refractive index of optical crystals. Phys. Rev. B 1989, 39, 3337–3350. [Google Scholar] [CrossRef]
- Long, H.; Chen, A.; Yang, G.; Li, Y.; Lu, P. Third-order optical nonlinearities in anatase and rutile TiO2 thin films. Thin Solid Films 2009, 517, 5601–5604. [Google Scholar] [CrossRef]
- Bernard, B.K.; Osheroff, M.R.; Hofman, A.; Mennear, J.H. Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats. Environ. Heal. 1990, 28, 417–429. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, C.; Xiang, B.; Yu, M.; Lu, F.; Yin, J.; Ruan, S. Fabrication of a rutile titanium dioxide thin film heterostructure using ion-implantation with Cu-Sn bonding. Opt. Mater. Exp. 2021, 11, 1196–1204. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Yu, J. Experimental investigation on submicron rib waveguide microring/racetrack resonators in silicon-on-insulator. Opt. Commun. 2009, 282, 22–26. [Google Scholar] [CrossRef]
- Zhu, Z.; Brown, T.G. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt. Exp. 2002, 10, 853–864. [Google Scholar] [CrossRef]
- Kane, Y. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Kedia, J.; Gupta, N. Numerical simulation of low loss silicon photonic wire waveguide with multiple cladding layers. Opt. Quant. Electron. 2017, 49, 185. [Google Scholar] [CrossRef]
- Evans, C.C.; Liu, C.; Suntivich, J. Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process. Opt. Express 2015, 23, 11160–11169. [Google Scholar] [CrossRef]
- Tao, S.H.; Mao, S.C.; Song, J.F.; Fang, Q.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Ultra-high order ring resonator system with sharp transmission peaks. Opt. Exp. 2010, 18, 393–400. [Google Scholar] [CrossRef]
- Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev. 2012, 6, 488–503. [Google Scholar] [CrossRef]
- Poon, J.K.; Scheuer, J.; Mookherjea, S.; Paloczi, G.T.; Huang, Y.; Yariv, A. Matrix analysis of microring coupled resonator optical waveguides. Opt. Express 2004, 12, 90–103. [Google Scholar] [CrossRef] [Green Version]
- Tan, Q.; Huang, X.; Zhou, W. A Plasmonic based Ultracompact Polarization Beam Splitter on Silicon-on-Insulator Waveguides. Sci. Rep. 2013, 3, 2206. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Compact design of a polarization beam splitter based on silicon-on-insulator platform. Laser Phys. 2018, 28, 116202. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, X.; Yang, L. Compact, Broadband and Low-Loss Polarization Beam Splitter on Lithium-Niobate-On-Insulator Using a Silicon Nanowire Assisted Waveguide. IEEE Photonics J. 2020, 12, 6601906. [Google Scholar] [CrossRef]
- Deng, C.; Lu, M.; Sun, Y.; Huang, L.; Wang, D. Broadband and compact polarization beam splitter in LNOI hetero-anisotropic metamaterials. Opt. Express 2021, 29, 11627–11634. [Google Scholar] [CrossRef]
- Liu, J.M.; Zhang, D.L. Compact and high-performance polarization beam splitter based on triple-waveguide coupler. Opt. Laser Technol. 2023, 161, 109159. [Google Scholar] [CrossRef]
Structure | Length (μm) | ER (dB) | EL (dB) | Bandwidth (nm) |
---|---|---|---|---|
LSPs [57] | 1.1 | 20.69 (TE) 20.33 (TM) | 0.249 (TE) 0.671 (TM) | (1450 nm–1650 nm) 200 nm (ER > 20 dB, TE) (ER > 12 dB, TM) |
DCs [58] | 11 | 20.32 (TE) 15.4 (TM) | 1.69 (TE) 2.72 (TM) | (1530 nm–1565 nm) 35 nm (ER > 10.6 dB, TE) (ER > 14.6 dB, TM) |
ADCs [59] | 16 | 26.7 (TE) 21.3 (TM) | 0.5 (TE) 0.2 (TM) | (1480 nm–1620 nm) 140 nm (ER > 10 dB, TE) (ER > 15 dB, TM) |
SWGs [60] | 160 | 25 (TE) 31 (TM) | <1 | (1450 nm–1634 nm) 185 nm (ER > 20 dB, TE) (1490 nm–1575 nm)85 nm (ER > 20 dB, TM) |
ADCs [61] | 31 | 55 (TE) 55 (TM) | 0.066 (TE) 0.2 (TM) | (1500 nm–1600 nm) 100 nm (ER > 29.4 dB, TE) (1527 nm–1587 nm)60 nm (ER > 20 dB, TM) |
DCs (this work) | 90 | 38 (TE) 43 (TM) | 2 (TE) 0.45 (TM) | (610 nm–660 nm) 50 nm (ER > 40 dB, TE) (ER > 22 dB, TM) |
MRRs (this work) | 48 | 45 (TE) 58 (TM) | 2.5 (TE) 0.7 (TM) | (610 nm–660 nm) 50 nm (ER > 40 dB, TE) (ER > 40 dB, TM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Ma, Y.; Zhao, C.; Xiang, B.; Yu, M.; Dai, Y.; Xu, F.; Lv, J.; Lu, F.; Zhou, C.; et al. Polarization Splitting at Visible Wavelengths with the Rutile TiO2 Ridge Waveguide. Nanomaterials 2023, 13, 1891. https://doi.org/10.3390/nano13121891
Zheng X, Ma Y, Zhao C, Xiang B, Yu M, Dai Y, Xu F, Lv J, Lu F, Zhou C, et al. Polarization Splitting at Visible Wavelengths with the Rutile TiO2 Ridge Waveguide. Nanomaterials. 2023; 13(12):1891. https://doi.org/10.3390/nano13121891
Chicago/Turabian StyleZheng, Xinzhi, Yujie Ma, Chenxi Zhao, Bingxi Xiang, Mingyang Yu, Yanmeng Dai, Fang Xu, Jinman Lv, Fei Lu, Cangtao Zhou, and et al. 2023. "Polarization Splitting at Visible Wavelengths with the Rutile TiO2 Ridge Waveguide" Nanomaterials 13, no. 12: 1891. https://doi.org/10.3390/nano13121891
APA StyleZheng, X., Ma, Y., Zhao, C., Xiang, B., Yu, M., Dai, Y., Xu, F., Lv, J., Lu, F., Zhou, C., & Ruan, S. (2023). Polarization Splitting at Visible Wavelengths with the Rutile TiO2 Ridge Waveguide. Nanomaterials, 13(12), 1891. https://doi.org/10.3390/nano13121891