Contribution of Processes in SN Electrodes to the Transport Properties of SN-N-NS Josephson Junctions
Abstract
:1. Introduction
2. Correct Determination of as Measured by Experiment
3. Model
4. Supercurrent Distribution in the N Part of SN Electrodes
5. Spatial Dependence of the Order Parameter Phase along the SN Interface
6. Current–Phase Relation
7. Discusion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, L.; Macfarlane, J.C.; Gallop, J.C.; Romans, E.; Cox, D.; Hutson, D.; Chen, J. Spatial Resolution Assessment of Nano-SQUIDs Made by Focused Ion Beam. IEEE Trans. Appl. Supercond. 2007, 17, 742–745. [Google Scholar] [CrossRef] [Green Version]
- Vijay, R.; Levenson-Falk, E.M.; Slichter, D.H.; Siddiqi, I. Approaching ideal weak link behavior with three dimensional aluminum nanobridges. Appl. Phys. Lett. 2010, 96, 223112. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, R.; Li, G.; Wu, L.; Liu, X.; Chen, L.; Ren, J.; Wang, Z. Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions. Supercond. Sci. Technol. 2018, 31, 055015. [Google Scholar] [CrossRef]
- Russo, R.; Esposito, E.; Crescitelli, A.; Gennaro, E.D.; Granata, C.; Vettoliere, A.; Cristiano, R.; Lisitskiy, M. NanoSQUIDs based on niobium nitride films. Supercond. Sci. Technol. 2016, 30, 024009. [Google Scholar] [CrossRef]
- Holzman, I.; Ivry, Y. On-chip integrable planar NbN nanoSQUID with broad temperature and magnetic-field operation range. AIP Adv. 2019, 9, 105028. [Google Scholar] [CrossRef] [Green Version]
- Shishkin, A.G.; Skryabina, O.V.; Gurtovoi, V.L.; Dizhur, S.E.; Faley, M.I.; Golubov, A.A.; Stolyarov, V.S. Planar MoRe-based direct current nanoSQUID. Supercond. Sci. Technol. 2020, 33, 065005. [Google Scholar] [CrossRef]
- Polychroniou, E.; Gallop, J.; Godfrey, T.; Cox, D.; Long, G.; Chen, J.; Romans, E.; Hao, L. Investigation of NanoSQUIDs Fabricated with a Range of Focused Ion Beam Sources. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1559, p. 012015. [Google Scholar]
- Faley, M.I.; Liu, Y.; Dunin-Borkowski, R.E. Titanium nitride as a new prospective material for NanoSQUIDs and superconducting nanobridge electronics. Nanomaterials 2021, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Faley, M.; Fiadziushkin, H.; Frohn, B.; Schüffelgen, P.; Dunin-Borkowski, R. TiN nanobridge Josephson junctions and nanoSQUIDs on SiN-buffered Si. Supercond. Sci. Technol. 2022, 35, 065001. [Google Scholar] [CrossRef]
- Faley, M.I.; Dunin-Borkowski, R.E. A Self-Flux-Biased NanoSQUID with Four NbN-TiN-NbN Nanobridge Josephson Junctions. Electronics 2022, 11, 1704. [Google Scholar] [CrossRef]
- Meti, L.; Long, G.; Godfrey, T.; Potter, J.; Cox, D.; Chapman, G.; Gallop, J.; Romans, E.; Hao, L. Development of flux-tuneable inductive nanobridge SQUIDs for quantum technology applications. IEEE Trans. Appl. Supercond. 2023, 33, 1–5. [Google Scholar] [CrossRef]
- Shelly, C.D.; See, P.; Ireland, J.; Romans, E.J.; Williams, J.M. Weak link nanobridges as single flux quantum elements. Supercond. Sci. Technol. 2017, 30, 095013. [Google Scholar] [CrossRef] [Green Version]
- Collins, J.A.; Rose, C.S.; Casaburi, A. Superconducting Nb Nanobridges for Reduced Footprint and Efficient Next-Generation Electronics. IEEE Trans. Appl. Supercond. 2022, 33, 1–8. [Google Scholar] [CrossRef]
- Thompson, M.L.; Castellanos-Beltran, M.; Hopkins, P.F.; Dresselhaus, P.D.; Benz, S.P. Effects of Nonsinusoidal Current Phase Relationships on Single Flux Quantum Circuits. IEEE Trans. Appl. Supercond. 2023, 33, 1–5. [Google Scholar] [CrossRef]
- Troeman, A.; Van Der Ploeg, S.; Il’Ichev, E.; Meyer, H.G.; Golubov, A.A.; Kupriyanov, M.Y.; Hilgenkamp, H. Temperature dependence measurements of the supercurrent-phase relationship in niobium nanobridges. Phys. Rev. B 2008, 77, 024509. [Google Scholar] [CrossRef] [Green Version]
- Keijers, W.; Baumans, X.D.; Panghotra, R.; Lombardo, J.; Zharinov, V.S.; Kramer, R.B.; Silhanek, A.V.; Van de Vondel, J. Nano-SQUIDs with controllable weak links created via current-induced atom migration. Nanoscale 2018, 10, 21475–21482. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, D.; Golubev, D.S.; Kubatkin, S.; Tafuri, F.; Bauch, T.; Lombardi, F. Enhanced Josephson coupling in hybrid nanojunctions. Phys. Rev. B 2023, 107, 094517. [Google Scholar] [CrossRef]
- Roditchev, D.; Brun, C.; Serrier-Garcia, L.; Cuevas, J.C.; Bessa, V.H.L.; Milošević, M.V.; Debontridder, F.; Stolyarov, V.; Cren, T. Direct observation of Josephson vortex cores. Nat. Phys. 2015, 11, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Noh, H.; Doh, Y.J.; Song, W.; Chong, Y.; Choi, M.S.; Yoo, Y.; Seo, K.; Kim, N.; Woo, B.C.; et al. Superconducting junction of a single-crystalline Au nanowire for an ideal Josephson device. ACS Nano 2011, 5, 2271–2276. [Google Scholar] [CrossRef] [Green Version]
- Skryabina, O.; Bakurskiy, S.; Shishkin, A.; Klimenko, A.; Napolskii, K.; Klenov, N.; Soloviev, I.; Ryazanov, V.; Golubov, A.; Roditchev, D.; et al. Environment-induced overheating phenomena in Au-nanowire based Josephson junctions. Sci. Rep. 2021, 11, 15274. [Google Scholar] [CrossRef]
- Sotnichuk, S.V.; Skryabina, O.V.; Shishkin, A.G.; Bakurskiy, S.V.; Kupriyanov, M.Y.; Stolyarov, V.S.; Napolskii, K.S. Long Single Au Nanowires in Nb/Au/Nb Josephson Junctions: Implications for Superconducting Microelectronics. ACS Appl. Nano Mater. 2022, 5, 17059–17066. [Google Scholar] [CrossRef]
- Skryabina, O.; Egorov, S.; Goncharova, A.; Klimenko, A.; Kozlov, S.; Ryazanov, V.; Bakurskiy, S.; Kupriyanov, M.Y.; Golubov, A.; Napolskii, K.; et al. Josephson coupling across a long single-crystalline Cu nanowire. Appl. Phys. Lett. 2017, 110, 222605. [Google Scholar] [CrossRef]
- Spanton, E.M.; Deng, M.; Vaitiekėnas, S.; Krogstrup, P.; Nygård, J.; Marcus, C.M.; Moler, K.A. Current–phase relations of few-mode InAs nanowire Josephson junctions. Nat. Phys. 2017, 13, 1177–1181. [Google Scholar] [CrossRef]
- Hart, S.; Cui, Z.; Ménard, G.; Deng, M.; Antipov, A.E.; Lutchyn, R.M.; Krogstrup, P.; Marcus, C.M.; Moler, K.A. Current-phase relations of InAs nanowire Josephson junctions: From interacting to multimode regimes. Phys. Rev. B 2019, 100, 064523. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.; Bestwick, A.; Gallagher, P.; Hong, S.S.; Cui, Y.; Bleich, A.S.; Analytis, J.; Fisher, I.; Goldhaber-Gordon, D. Unconventional Josephson effect in hybrid superconductor-topological insulator devices. Phys. Rev. Lett. 2012, 109, 056803. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Dellabetta, B.; Yang, A.; Schneeloch, J.; Xu, Z.; Valla, T.; Gu, G.; Gilbert, M.J.; Mason, N. Symmetry protected Josephson supercurrents in three-dimensional topological insulators. Nat. Commun. 2013, 4, 1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sochnikov, I.; Bestwick, A.J.; Williams, J.R.; Lippman, T.M.; Fisher, I.R.; Goldhaber-Gordon, D.; Kirtley, J.R.; Moler, K.A. Direct measurement of current-phase relations in superconductor/topological insulator/superconductor junctions. Nano Lett. 2013, 13, 3086–3092. [Google Scholar] [CrossRef] [PubMed]
- Galletti, L.; Charpentier, S.; Iavarone, M.; Lucignano, P.; Massarotti, D.; Arpaia, R.; Suzuki, Y.; Kadowaki, K.; Bauch, T.; Tagliacozzo, A.; et al. Influence of topological edge states on the properties of Al/Bi 2 Se 3/Al hybrid Josephson devices. Phys. Rev. B 2014, 89, 134512. [Google Scholar] [CrossRef] [Green Version]
- Sochnikov, I.; Maier, L.; Watson, C.A.; Kirtley, J.R.; Gould, C.; Tkachov, G.; Hankiewicz, E.M.; Brüne, C.; Buhmann, H.; Molenkamp, L.W.; et al. Nonsinusoidal current-phase relationship in Josephson junctions from the 3D topological insulator HgTe. Phys. Rev. Lett. 2015, 114, 066801. [Google Scholar] [CrossRef] [Green Version]
- Kurter, C.; Finck, A.D.; Hor, Y.S.; Van Harlingen, D.J. Evidence for an anomalous current–phase relation in topological insulator Josephson junctions. Nat. Commun. 2015, 6, 7130. [Google Scholar] [CrossRef] [Green Version]
- Wiedenmann, J.; Bocquillon, E.; Deacon, R.S.; Hartinger, S.; Herrmann, O.; Klapwijk, T.M.; Maier, L.; Ames, C.; Brüne, C.; Gould, C.; et al. 4 π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. Nat. Commun. 2016, 7, 10303. [Google Scholar] [CrossRef] [Green Version]
- Bocquillon, E.; Deacon, R.S.; Wiedenmann, J.; Leubner, P.; Klapwijk, T.M.; Brüne, C.; Ishibashi, K.; Buhmann, H.; Molenkamp, L.W. Gapless Andreev bound states in the quantum spin Hall insulator HgTe. Nat. Nanotechnol. 2017, 12, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J.H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O.; et al. Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires. Sci. Rep. 2017, 7, 45276. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; De Ronde, B.; De Boer, J.; Ridderbos, J.; Zwanenburg, F.; Huang, Y.; Golubov, A.; Brinkman, A. Zeeman-effect-induced 0- π transitions in ballistic Dirac semimetal Josephson junctions. Phys. Rev. Lett. 2019, 123, 026802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayyalha, M.; Kargarian, M.; Kazakov, A.; Miotkowski, I.; Galitski, V.M.; Yakovenko, V.M.; Rokhinson, L.P.; Chen, Y.P. Anomalous low-temperature enhancement of supercurrent in topological-insulator nanoribbon Josephson junctions: Evidence for low-energy Andreev bound states. Phys. Rev. Lett. 2019, 122, 047003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunakova, G.; Bauch, T.; Trabaldo, E.; Andzane, J.; Erts, D.; Lombardi, F. High transparency Bi2Se3 topological insulator nanoribbon Josephson junctions with low resistive noise properties. Appl. Phys. Lett. 2019, 115, 172601. [Google Scholar] [CrossRef] [Green Version]
- Kunakova, G.; Surendran, A.P.; Montemurro, D.; Salvato, M.; Golubev, D.; Andzane, J.; Erts, D.; Bauch, T.; Lombardi, F. Topological insulator nanoribbon Josephson junctions: Evidence for size effects in transport properties. J. Appl. Phys. 2020, 128, 194304. [Google Scholar] [CrossRef]
- Stolyarov, V.S.; Yakovlev, D.S.; Kozlov, S.N.; Skryabina, O.V.; Lvov, D.S.; Gumarov, A.I.; Emelyanova, O.V.; Dzhumaev, P.S.; Shchetinin, I.V.; Hovhannisyan, R.A.; et al. Josephson current mediated by ballistic topological states in Bi2Te2. 3Se0.7 single nanocrystals. Commun. Mater. 2020, 1, 38. [Google Scholar] [CrossRef]
- Kim, N.H.; Kim, H.S.; Hou, Y.; Yu, D.; Doh, Y.J. Superconducting quantum interference devices made of Sb-doped Bi2Se3 topological insulator nanoribbons. Curr. Appl. Phys. 2020, 20, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Kayyalha, M.; Kazakov, A.; Miotkowski, I.; Khlebnikov, S.; Rokhinson, L.P.; Chen, Y.P. Highly skewed current–phase relation in superconductor–topological insulator–superconductor Josephson junctions. NPJ Quantum Mater. 2020, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Jalil, A.R.; Tse, P.L.; Kölzer, J.; Rosenbach, D.; Valencia, H.; Luysberg, M.; Mikulics, M.; Panaitov, G.; Grützmacher, D.; et al. Proximity-Effect-Induced Superconductivity in Nb/Sb2Te3-Nanoribbon/Nb Junctions. Ann. Der Phys. 2020, 532, 2000273. [Google Scholar] [CrossRef]
- Tse, P.L.; Tian, F.; Mugica-Sanchez, L.; Ruger, O.; Undisz, A.; Möthrath, G.; Ronning, C.; Takahashi, S.; Lu, J.G. Microwave AC Resonance Induced Phase Change in Sb2Te3 Nanowires. Nano Lett. 2020, 20, 8668–8674. [Google Scholar] [CrossRef] [PubMed]
- Stolyarov, V.S.; Pons, S.; Vlaic, S.; Remizov, S.V.; Shapiro, D.S.; Brun, C.; Bozhko, S.I.; Cren, T.; Menshchikova, T.V.; Chulkov, E.V.; et al. Superconducting long-range proximity effect through the atomically flat interface of a Bi2Te3 topological insulator. J. Phys. Chem. Lett. 2021, 12, 9068–9075. [Google Scholar] [CrossRef] [PubMed]
- Stolyarov, V.S.; Roditchev, D.; Gurtovoi, V.L.; Kozlov, S.N.; Yakovlev, D.S.; Skryabina, O.V.; Vinokur, V.M.; Golubov, A.A. Resonant Oscillations of Josephson Current in Nb-Bi2Te2.3Se0.7-Nb Junctions. Adv. Quantum Technol. 2022, 5, 2100124. [Google Scholar] [CrossRef]
- Kudriashov, A.; Babich, I.; Hovhannisyan, R.A.; Shishkin, A.G.; Kozlov, S.N.; Fedorov, A.; Vyalikh, D.V.; Khestanova, E.; Kupriyanov, M.Y.; Stolyarov, V.S. Revealing Intrinsic Superconductivity of the Nb/BiSbTe2Se Interface. Adv. Funct. Mater. 2022, 32, 2209853. [Google Scholar] [CrossRef]
- Surendran, P.A.; Montemurro, D.; Kunakova, G.; Palermo, X.; Niherysh, K.; Trabaldo, E.; Golubev, D.; Andzane, J.; Erts, D.; Lombardi, F.; et al. Current-phase relation of a short multi-mode Bi2Se3 topological insulator nanoribbon Josephson junction with ballistic transport modes. Supercond. Sci. Technol. 2023, 36, 064003. [Google Scholar] [CrossRef]
- Soloviev, I.; Bakurskiy, S.; Ruzhickiy, V.; Klenov, N.; Kupriyanov, M.; Golubov, A.; Skryabina, O.; Stolyarov, V. Miniaturization of Josephson Junctions for Digital Superconducting Circuits. Phys. Rev. Appl. 2021, 16, 044060. [Google Scholar] [CrossRef]
- Marychev, P.M.; Vodolazov, D.Y. A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer. Beilstein J. Nanotechnol. 2020, 11, 858–865. [Google Scholar] [CrossRef]
- Bosboom, V.; der Vegt, J.J.W.V.; Kupriyanov, M.Y.; Golubov, A.A. Selfconsistent 3D model of SN-N-NS Josephson junctions. Supercond. Sci. Technol. 2021, 34, 115022. [Google Scholar] [CrossRef]
- Cuthbert, M.; DeBenedictis, E.; Fagaly, R.L.; Fagas, G.; Febvre, P.; Fourie, C.; Frank, M.; Gupta, D.; Herr, A.; Holmes, D.S.; et al. International roadmap for devices and systems. In Cryogenic Electronics and Quantum Information Processing; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Likharev, K.K. Superconducting weak links. Rev. Mod. Phys. 1979, 51, 101–159. [Google Scholar] [CrossRef]
- Golubov, A.A.; Kupriyanov, M.Y.; Il’ichev, E. The current-phase relation in Josephson junctions. Rev. Mod. Phys. 2004, 76, 411–469. [Google Scholar] [CrossRef] [Green Version]
- Likharev, K.K. Vortex motion and the Josephson effect in superconducting thin bridges. Zh. Eksp. Teor. Fiz. 1971, 61, 1700–1711. [Google Scholar]
- Kulik, I.O.; Omel’yanchuk, A.N. Contribution to the microscopic theory of the Josephson effect in superconducting bridges. Pis’ma Zh. Eksp. Teor. Fiz. 1975, 21, 216–219. [Google Scholar]
- Likharev, K.K.; Yakobson, L.A. Dynamical properties of superconducting filaments of finite length. Zh. Eksp. Teor. Fiz. 1975, 68, 1150–1160. [Google Scholar]
- Likharev, K.K. The relation Js(φ) for SNS bridges of variable thickness. Pis’ma Zh. Tekh. Fiz. 1976, 2, 29. [Google Scholar]
- Kupriyanov, M.Y.; Likharev, K.K.; Lukichev, V.F. Influence of effective electron interaction on the critical current of Josephson weak links. Zh. Eksp. Teor. Fiz. 1982, 83, 431–441. [Google Scholar] [CrossRef]
- Dubos, P.; Courtois, H.; Pannetier, B.; Wilhelm, F.K.; Zaikin, A.D.; Schön, G. Josephson critical current in a long mesoscopic S-N-S junction. Phys. Rev. B 2001, 63, 064502. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Z.G.; Kupriyanov, M.Y.; Likharev, K.K.; Meriakri, S.V.; Snigirev, O.V. Boundary-conditions for the Usadel and Eilenberger equations, and properties of dirty SNS sandwich-type junctions. Sov. J. Low. Temp. Phys. 1981, 7, 274–281. [Google Scholar]
- Kupriyanov, M.Y.; Lukichev, V.F. The influence of proximity effect in electrodes on the stationary properties of S-N-S Josephson structures. Sov. J. Low. Temp. Phys. 1982, 8, 526–529. [Google Scholar]
- Zubkov, A.; Kupriyanov, M. Effect of depairing in electrodes on the stationary properties of weak links. Sov. J. Low Temp. Phys. 1983, 5, 279–281. [Google Scholar]
- Barash, Y.S. Anharmonic Josephson current in junctions with an interface pair breaking. Phys. Rev. B 2012, 85, 100503. [Google Scholar] [CrossRef] [Green Version]
- Kupriyanov, M. Effect of a finite transmission of the insulating layer on the properties of SIS tunnel-junctions. JETP Lett. 1992, 56, 399–405. [Google Scholar]
- Golubov, A.; Kupriyanov, M. The current phase relation in Josephson tunnel junctions. JETP Lett. 2015, 81, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Osin, A.S.; Fominov, Y.V. Superconducting phases and the second Josephson harmonic in tunnel junctions between diffusive superconductors. Phys. Rev. B 2021, 104, 064514. [Google Scholar] [CrossRef]
- Osin, A.S.; Fominov, Y.V. Comment on “Josephson Current as a Boundary Condition for Gor’kov Equations. J. Supercond. Nov. Magn. 2022, 36, 55–58. [Google Scholar] [CrossRef]
- Semenov, V.K.; Polyakov, Y.A.; Tolpygo, S.K. Very Large Scale Integration of Josephson-Junction-Based Superconductor Random Access Memories. IEEE Trans. Appl. Supercond. 2019, 29, 1302809. [Google Scholar] [CrossRef] [Green Version]
- Kuprianov, M.Y.; Lukichev, V.F. Effect of boundary transparency on critical current in dirty SS’S structures. Zh. Eksp. Teor. Fiz. 1988, 94, 139–149. [Google Scholar]
- Golubov, A.A.; Kuprianov, M.Y. Josephson effect in SNlNS and SNIS tunnel structures with finite transparency of the SN boundaries. Zh. Eksp. Teor. Fiz. 1989, 96, 1420–1433. [Google Scholar]
- Golubov, A.A.; Houwman, E.P.; Gijsbertsen, J.G.; Krasnov, V.M.; Flokstra, J.; Rogalla, H.; Kupriyanov, M.Y. Proximity effect in superconductor-insulator-superconductor Josephson tunnel junctions: Theory and experiment. Phys. Rev. B 1995, 51, 1073–1089. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, A.; Lerch, P.; Zhao, S.P.; Nussbaumer, T.; Kirk, E.C.; Ott, H.R. Proximity effects in Nb/Al-AlOx-Al/Nb superconducting tunneling junctions. Phys. Rev. B 1999, 59, 8875. [Google Scholar] [CrossRef]
- Brammertz, G.; Poelaert, A.; Golubov, A.A.; Verhoeve, P.; Peacock, A.; Rogalla, H. Generalized proximity effect model in superconducting bi- and trilayer films. J. Appl. Phys. 2001, 90, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Baxter, D.V.; Steenwyk, S.D.; Bass, J.; Pratt, W.P. Resistance and spin-direction memory loss at Nb/Cu interfaces. J. Appl. Phys. 1999, 85, 4545. [Google Scholar] [CrossRef]
- Park, W.; Baxter, D.V.; Steenwyk, S.; Moraru, I.; Pratt, W.P.; Bass, J. Measurement of resistance and spin-memory loss (spin relaxation) at interfaces using sputtered current perpendicular-to-plane exchange-biased spin valves. Phys. Rev. B 2000, 62, 1178. [Google Scholar] [CrossRef]
- Sharma, A.; Romero, J.A.; Theodoropoulou, N.; Loloee, R.; Pratt, J.W.P.; Bass, J. Specific resistance and scattering asymmetry of Py/Pd, Fe/V, Fe/Nb, and Co/Pt interfaces. J. Appl. Phys. 2007, 102, 113916. [Google Scholar] [CrossRef]
- Tuuli, E.; Gloos, K. Normal reflection at superconductor - normal metal interfaces due to Fermi surface mismatch. J. Phys. Conf. Ser. 2012, 400, 042066. [Google Scholar] [CrossRef] [Green Version]
- Bass, J. CPP magnetoresistance of magnetic multilayers: A critical review. J. Magn. Magn. Mater. 2016, 408, 244–320. [Google Scholar] [CrossRef] [Green Version]
- Stolyarov, V.S.; Tristan, C.; Christophe, B.; Golovchanskiy, I.A.; Skryabina, O.V.; Kasatonov, D.I.; Khapaev, M.M.; Kupriyanov, M.Y.; Golubov, A.A.; Dimitri, R. Expansion of a superconducting vortex core into a diffusive metal. Nat. Commun. 2018, 2, 2277. [Google Scholar] [CrossRef] [Green Version]
- Tolpygo, S.K.; Bolkhovsky, V.; Rastogi, R.; Zarr, S.; Golden, E.; Weir, T.J.; Johnson, L.M.; Semenov, V.K.; Gouker, M.A. A 150-nm process node of an eight-Nb-layer fully planarized process for superconductor electronics. In Proceedings of the Applied Superconductivity Conference, ASC 2020 Virtual Conference. Superconductivity News Forum (SNF), Virtual, 24 October–7 November 2020; Volume 14, p. STP669 Wk1EOr3B-01. Available online: https://snf.ieeecsc.org/issues/snfissue-no-49-march-2021 (accessed on 15 May 2023).
- Golikova, T.E.; Hubler, F.; Beckmann, D.; Klenov, N.V.; Bakurskiy, S.V.; Kupriyanov, M.Y.; Batov, I.E.; Ryazanov, V.V. Critical current in planar SNS Josephson junctions. JETP Lett. 2012, 96, 668–673. [Google Scholar] [CrossRef]
- Usadel, K.D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 1970, 25, 507–509. [Google Scholar] [CrossRef]
- Zubkov, A.A.; Kupriyanov, M.Y.; Semyonov, V.K. Steady-state Properties of the Josephson Junction with Direct Conduction. Fiz. Nizk. Temp. 1981, 7, 1365–1371. [Google Scholar]
- Vijay, R.; Sau, J.; Cohen, M.L.; Siddiqi, I. Optimizing anharmonicity in nanoscale weak link Josephson junction oscillators. Phys. Rev. Lett. 2009, 103, 087003. [Google Scholar] [CrossRef] [Green Version]
- Assouline, A.; Feuillet-Palma, C.; Bergeal, N.; Zhang, T.; Mottaghizadeh, A.; Zimmers, A.; Lhuillier, E.; Eddrie, M.; Atkinson, P.; Aprili, M.; et al. Spin-Orbit induced phase-shift in Bi2Se3 Josephson junctions. Nat. Commun. 2019, 10, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Wu, L.; Wang, Y.; Pan, Y.; Zhang, D.; Zeng, J.; Liu, X.; Ma, L.; Peng, W.; Wang, Y.; et al. Miniaturization of the Superconducting Memory Cell via a Three-Dimensional Nb Nano-superconducting Quantum Interference Device. ACS Nano 2020, 14, 11002–11008. [Google Scholar] [CrossRef] [PubMed]
- Ruhtinas, A.; Maasilta, I.J. Highly tunable NbTiN Josephson junctions fabricated with focused helium ion beam. arXiv 2023, arXiv:2303.17348. [Google Scholar]
- Golubov, A.A.; Kupriyanov, M.Y. Anomalous proximity effect in d-wave superconductors. JETP Lett. 1998, 67, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Golubov, A.A.; Kupriyanov, M.Y. Surface electron scattering in d-wave superconductors. JETP Lett. 1999, 69, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Bakurskiy, S.V.; Golubov, A.A.; Kupriyanov, M.Y.; Yada, K.; Tanaka, Y. Anomalous surface states at interfaces in p -wave superconductors. Phys. Rev. B 2014, 90, 064513-1–064513-10. [Google Scholar] [CrossRef] [Green Version]
- Bakurskiy, S.; Klenov, N.; Soloviev, I.; Kupriyanov, M.Y.; Golubov, A. Observability of surface currents in p-wave superconductors. Supercond. Sci. Technol. 2017, 30, 044005. [Google Scholar] [CrossRef] [Green Version]
- Bakurskiy, S.; Fominov, Y.V.; Shevchun, A.; Asano, Y.; Tanaka, Y.; Kupriyanov, M.Y.; Golubov, A.; Trunin, M.; Kashiwaya, H.; Kashiwaya, S.; et al. Local impedance on a rough surface of a chiral p-wave superconductor. Phys. Rev. B 2018, 98, 134508. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.I.; Golubov, A.A. Robustness of chiral surface current and subdominant s-wave Cooper pairs. arXiv 2023, arXiv:2305.18018. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruzhickiy, V.; Bakurskiy, S.; Kupriyanov, M.; Klenov, N.; Soloviev, I.; Stolyarov, V.; Golubov, A. Contribution of Processes in SN Electrodes to the Transport Properties of SN-N-NS Josephson Junctions. Nanomaterials 2023, 13, 1873. https://doi.org/10.3390/nano13121873
Ruzhickiy V, Bakurskiy S, Kupriyanov M, Klenov N, Soloviev I, Stolyarov V, Golubov A. Contribution of Processes in SN Electrodes to the Transport Properties of SN-N-NS Josephson Junctions. Nanomaterials. 2023; 13(12):1873. https://doi.org/10.3390/nano13121873
Chicago/Turabian StyleRuzhickiy, Vsevolod, Sergey Bakurskiy, Mikhail Kupriyanov, Nikolay Klenov, Igor Soloviev, Vasily Stolyarov, and Alexander Golubov. 2023. "Contribution of Processes in SN Electrodes to the Transport Properties of SN-N-NS Josephson Junctions" Nanomaterials 13, no. 12: 1873. https://doi.org/10.3390/nano13121873
APA StyleRuzhickiy, V., Bakurskiy, S., Kupriyanov, M., Klenov, N., Soloviev, I., Stolyarov, V., & Golubov, A. (2023). Contribution of Processes in SN Electrodes to the Transport Properties of SN-N-NS Josephson Junctions. Nanomaterials, 13(12), 1873. https://doi.org/10.3390/nano13121873